Image transformations

Contrast change

POodL RERHESSING e

* Apply the same function to each pixel value

* Many applications

e Common

* Linear sensors produce strange pictures
* The world has high dynamic range, 8 bits is too few
 Typically 12 bit sensor, 8 bit image

* Most cameras process sensor results before they report them

=

Wl
3

—
==
e
_—
E]
E
=
S
=
==
==
===
k=
e
—]

From wikipedia

Pointwise transformations

0.0 0.2 04 0.6 0.8 1.0
Input value

FIGURE 3.1: A number of pointwise image transformations applied to the image
on the top left. The bottom left shows plots of the function applied; on the
right. results of applying these functions to that image. These transformations
tend to spread out the dark wvalues, and squash the brighter values. R, G and
B respectively show the red, green and blue functions applied to each of the color
channels of the image. Mix shows the result of applying the red function to the red
channel, the green function to the green channel, and the blue function to the blue
channel. Darker pizels tend to shift to the blue in the mix result, and brighter pizels
have a less pronounced color shift. Image credit: Figure shows my photograph of a
sunset at Gordon’s Bay.

Output value

Pointwise transformations

1.0 1

0.8 4

0.6 4

0.4 4

0.2 1 = |inear
——]
___Vj

0.0 1 — 3

) 0.2 0.4 0.6 0.8 1.0

0.0

Input value

1.01

Output value
o
o

e
IS

0.0 1

FIGURE 3.2: Many imaging and rendering devices have a response that is a power
of the input, so that output = Cinput’, where v is a parameter of the device. One
can simulate this effect by applying a transform like those shown in the center
(curves for several values of). Note that you can remove the effect of such a
transform — gamma correct the image — by applying another such transform with an
appropriately chosen . The tmage on the left is transformed to the two erxamples
on the right with different v values. Image credit: Figure shows my photograph of

a Twer in Singapore.

Gamma curves

0.8

0.21

= gamma=2
=== gamma=0,5
m— gamma=3
=== gamma=0,33
m— gamma=4
=== gamma=0,25

0.0

02

0.4 0.6 0.8 1.0
Input value

Gamma curves

1.0 1
0.8
/,’
7’ ,/
3 0.6 1 /, 7 ’
g Vs 7 7
2 / 7’
2 / / 7’
=4 4
894 / // linear
gamma=2
gamma=0.5
0.2 1 gamma=3
gamma=0,33
= gamma=4
0.0 4 === gamma=0,25

0.0 0.2 0.4 0.6 0.8 1.0
Input value

Transformations
 Notation:

that transformations are invertible. Adopt the convention that a point x = (x,y)
is mapped by a transformation to the point u = (u,v) = (u(x,y),v(x,y)), and
u = (u,v) is mapped to x = (&, y) by the inverse. In vector notation, x is mapped
to u, and so on. Write A for a 2 x 2 matrix, whose ¢, 7'th component is a;;.

Translation and rotation

Translation maps the point (x,y) to the point (u,v) = (u(x,y),v(x,y)) =
(x 4+ tz,y + ty) for two constants t, and t,. Here (z,y) = (u —tz,v —ty). In vector
notation, u = x+t and x = u—t. Translation preserves lengths and angles. Choose
two points x; and Xo. The squared distance from x; to Xz is (X1 — xz)T(xl — X2);
but for a translation (u; — us) = (X7 — X3). A similar argument shows that angles
are preserved (exercises).

Rotation takes the point (x,y) to the point (u,v) = (u(x,y),v(x,y)) =
xcosf —ysinf, xsinf + ycosf. Here 6 is the angle of rotation, rotation is anti-
clockwise, and (xz,y) = ucosf + vsinf, —usinf + vcosf. Write R for a rotation
matrix (a matrix where RTR = Z and det(R) = 1); then u = Rx and x =
R~1u = RTu. Rotation preserves lengths and angles. Choose two points x; and
X. The squared distance from x; to Xg is (x; — x2)7 (X1 — X2); but for a rotation
(up —uy) = R(x1; — X2) and RTR =Z. A similar argument shows that angles are
preserved (exercises).

Euclidean Transformations

A Euclidean transformation is a rotation and translation, so (u(x,y),v(x,y)) =
(xcos@—ysinf+t,,v(x,y) = xsinf+ycosf+t,). Euclidean transformations pre-
serve lengths and angles (and so areas) and are sometimes referred to as rigid body
transformations. Here (z,y) = ((u —t;)cosf + (v —t,)sinf, —(u —t;)sinfh + (v —
ty)cosf). In vector notation, u = Rx +t and x = R} (u—t) = RT (u—t). Eu-
clidean transformations preserve lengths and angles (you can think of a Euclidean
transformation as a rotation followed by a translation).

Scaling

Uniform scaling where (u,v) = (s, sy) for s > 0. Here (x,y) = (1/su, 1/sv).
In vector notation, u = sx and x = (1/s)u. Uniform scaling preserves angles, but
not lengths (exercises).

Non-uniform scaling where (u,v) = (s, ty) for s and ¢ both positive, and
so (x,y) = (1/su, 1/tv). Write diag(s, t) for the matrix with s and ¢ on the diagonal.
In vector notation, u = diag(s,t)x and x = diag(1/s,1/t)u. Non-uniform scaling
will usually change both lengths and angles.

Affine transformations

Affine transformations are better written in vector notation. Write A for
a 2 X 2 matrix which is invertible, and t for some constant vector. Here u = Ax+t
and x = A7 !(u — t). Affine transformations will usually change both lengths and
angles.

P : Projective transformations involve quite inefficient notation if one does
rOJ not know homogenous coordinates (Section ?7), and writing them in vector form is
clumsy. Write p;; for the 7, j'th component of a 3 x 3 matrix P that is invertible.

Then

P11T+Pp12Y+pi3
[u] — DP31T+P32Y-+P33

v P21T+p22yY+p2s
P31T+p32yY—+pss

The inverse transformation is obtained by applying the inverse of P to u according
to the recipe above. Notice that all the classes of transformation described are a
case of a projective transformation (exercises). For a vector representation,

write
- -
P% P13
P=1 Py p23
T
| P3 P33 |
for a 3 x 3 array with inverse Q. Then
P X+p13 | [afutaqis
T T
u= P3 X+P33 and x = Q3 u+4gss
P2 X+Pp23 ds u+tqos3
P3 X+p33 | | q3 u+qss

Notice also that if P = AQ for some A # 0, then P and Q implement the same
projective transformation.

v

FIGURE 3.3: The most common coordinate system for images, on the left. The
origin 1s at the top left corner, and we count in pizels. This is an M X N image.
I will use the convention L;; for points in this coordinate system, so the top right
pizel is Lypy. It is usual for pizel locations to be indexed starting at 1 (so1 <i < M
and 1 < j < N). In some environments (notoriously, Python), the index starts at
0. Keep track of this point, or you will lose some pizels. On the right, the origin
1s at the bottom left, and the coordinate axes are more familiar. It is a good idea
to use a range from 0 — 1 (rather than O — M) in this coordinate system, but if
the image s not square one direction will run from 0 to a. Conwverting from one
coordinate system to the other is straightforward, but not being consistent about the
coordinate system you are working in is an important source of simple, annoying
errors. I will always work in the coordinate system shown on the left.

Blending

FIGURE 3.5: The chickens of Figure 3.4 are simply pasted in the top row (as in
that figure, reproduced here for comparison; the arrow on the left shows a problem
with pasting not identified in that figure). In the bottom row, the chickens have
been blended using the blending mask shown. Note the pasting is much less obvious.
Image credit: Figure shows my photograph of jungle fowl in Singapore.

1,0 Y

(142, 78)

(-90, 164)

(162, 0)

Y

(52, 241)

Nearest Neighbors Bilinear

FIGURE 3.7: The chicken of Figure 3.4, rotated by 0.5 radians as in Figure 3.6,
showing the effect of different choices of interpolation. I have zoomed in on a
section of the tail feathers to make the difference more apparent. Image credit:
Figure shows my photograph of jungle fowl in Singapore.

Nearest neighbors

(0, 0) (0, 1)
(1,0)

0,0

(0,0) .

(56, 187)
(162, 0)
(162, 48)
4 (218, 235)

<1, O.3>
03, 1

Nearest neighbors

(0. 0) 0. 1) -
(1.0)
T (0, 2*187/3)
| (0, 187) 2
(162, 0)
Y
1/3, 0, 0

-187/(3*162), 1/3, 187/3)
2/(3*162), O, 1

Image separations

Registering separations

* What happens if R, G, B aren’t exactly alighed?
* (historical photographs)

* FixR
Slide G by tx, ty, compute match cost
Choose tx, ty with best match

Do B same way

* Q: what match cost?
* Q: what if there are many translations?

Match Costs

* SSD (sum of squared differences)

The sum of squared differences or SSD scores the similarity between the overlapping
parts of two separations R and B. Given an offset m,n, the SSD is

1
Creg(m,n; R, B) = & Y. (Rij—Gi—mj—n)".

overlap

Here overlap is the rectangle of pixel locations with meaningful values for both R
and G and N, is the number of pixels in that rectangle. Notice that overlap and
so N, change with m and n, so we must compare overlaps of different sizes for
different offsets. This means it is important that Creg is an average.

Match Costs

e Cosine distance

e The cosine distance, given by:

-Ai' * Bi—m, | —n
Ceos(m,n) = Z (.72 J) : .
overlap \/ 2. overlap A \/ Zoverlap B mi-n

Annoyingly, this cost function is largest when best, even though it’s called a
distance. Some authors subtract this distance from one (its largest value) to
fix this.

Match Costs

e The correlation coefficient, given by:

] Bi—m i—n —
Ccorr(nl; 71) = Z (‘A J 'uA)2* (»J 5B>
overlap \/ Eoverla.p A \/ Zoverlap B mj—n

1
where g = N Z A;; and
o)

overlap

1
where pup = N Z B;;.
o)

overlap

This is big for the best alignment. Notice how this corrects for the mean of
the overlap in each window.

TI‘A AAA‘- AIII“AAA

Squared error

Correlation Cosine distance

0.028

0.996
0‘994:|

0.026

0.024

0.022

0.02
20

Lagni:

Target Cosme Correlatlon

:---
e

What if there are many translations?

* Build a gaussian pyramid (for example, 2x downsampling)
* Align coarsest (N)’th scale by tx, ty

* This gives estimate 2 tx, 2 ty for (N-1) scale translation

. AND search range (-1, 0, 1) x (-1, 0, 1)

. search to get tx’, ty’

 Redo for N-2’th scale, etc.

* Very powerful pattern: Coarse to fine search

