CHAPTER 10

Using Patches to Inpaint and
Denoise

This chapter introduces a new and very important property of images: sim-
ilar patches tend to appear rather often in an image. This property is extremely
powerful, because it means that if a patch at some location is degraded, there is
very likely another version of that patch at another location that is not. In turn,
you can look far away from the pixel you are denoising to find useful information
about what it looks like. You could even look in other images, as long as you can
control the computational problems involved in finding the right patch.

Figure 10.1 illustrates this essential property. I selected five locations in an
image at random. I took the 5 x 5 patches centered at each location, then found
the top 20 matching patches in the image. The best matches are very good. Some
very good matches are to patches that are far away from the original location. It
should be clear that the size of the patch (very often, referred to as the scale) you
try to match has strong effects on this property. Experience of images will tell you
that, if the patch is 1 x 1, there will be a large number of matches (which is slightly
surprising exercises ). If the patch is very large, there must be few matches. But
patches of moderate scale find many matches. Figure ??7 shows matches varying by
scale.

10.1 INPAINTING MISSING PIXELS BY MATCHING
10.1.1 Replacing Knocked-out Pixels

Imagine you have an image where some pixels have been set to zero (knocked out)
but all others are reliable. The problem of dealing with knocked out pixels is
known as inpainting. Because real pixels are never zero, you know which pixels are
noise. For the moment, assume that the noise pixels are scattered and are selected
randomly (as long as they are well separated, the details do not really matter), and
are moderately rare. Denoising this image requires estimating the true value of
the knocked out pixels. You should immediately think of applying a median filter
(Section ?7?), which certainly applies to this example.

Here is an alternative strategy. Look at the patch around a noise pixel (the
target patch). Images are quite repetitive in structure, meaning that there is likely
another patch in the image that matches this one. Now find a pool of patches that
match the target well enough. The center pixel in each of these patches is a good
estimate of the value of the knocked out pixel. The knocked out pixel can then
be replaced either by summarizing these center pixels using a mean, or choosing
randomly among them. Alternatively, you could take the center pixel from the best
matching patch.

168



Section 10.1 Inpainting Missing Pixels by Matching 169

FIGURE 10.1: Images are made up of patches chosen from quite a small vocabulary,
and so any one patch in an image tends to match a number of other patches quite
well. Top row: shows five image patches in detail, selected from the image below
at random, and their matching patches for three different patch sizes. The left
column in each shows the patch, and the other columns show 20 matching patches,
found in the image, in order of SSD distance (smallest and so best matching to the
left). Notice that there are many patches that are very like a given patch. Bottom
row shows the matches on top of the image. The center of each of the fans of
line segments is the query patch (letters key the patch to the details), and each
line segment joins a patch to a matching patch. The lines are brighter for small
distances, and fainter for large distances. A thicker line occurs when two or more
matching patches are close to one another. Notice how matching patches can be
quite far away from the query patch (long lines) and how some patches repeat often
(many bright lines) whereas others have few matches (many faint lines). Notice
also that smaller patches have more widely distributed matches (broad fan, few
thick lines) and larger patches tend to have matches that are close together. Image
credit: Figure shows my photograph of vegetation in Sao Paulo.

The details are straightforward. When you compute the goodness of the
match, some pixels should not contribute. At least the center pixel of the target
patch can’t (because you don’t know its value) and there might be other known
noise pixels either in the target patch or in the image patch to which you are
matching. This means you need to use a masked normalized SSD, using a mask
that is zero at every pixel you don’t know.
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FIGURE 10.2: Inpainting occasional missing pizels by matching patches is very suc-
cessful. Top row shows images; bottom row shows detail. For reference, the
original image is on the left; just under 1% of the pixels in this image have been
set to zero (locations chosen uniformly at random) to produce the center image;
the image on the right has been reconstructed by finding the closest 5 x 5 patch that
matches the patch surrounding the knocked out pizel (but doesn’t have a knocked out
pizel in it), then replacing the knocked out pizel with the center of the patch. Look
for problems by finding a black pixel in the center detail image that is replaced by
an implausible pizel in the right image (a fruitless search!). Tmage credit: Figure
shows my photograph of vegetation in Sao Paulo.

Definition: 10.1 The masked normalized SSD

The masked normalized SSD scores the similarity between two images
U and V of the same size (N x M pixels). You are given a mask M
which is one for pixels that are known and zero for pixels that are not
known. Compute

mnSSD(U, V) = (ﬁ) > Mi; (Rij — By)” .

There should always be at least one matching patch, otherwise you can’t
obtain the value of the missing pixel. This means the pool of matches that are good
enough should always contain the best match. Build this pool from the best match,
together with the top k& matches that are better than some threshold. Figure 10.2



10.1.2

Section 10.1 Inpainting Missing Pixels by Matching 171

Original _ Knocked-out pixels ‘ ___Inpainted pixels

FIGURE 10.3: Inpainting still works when a lot of pizels have been knocked out, as
long as you are careful about how you match. Top row shows images; bottom
row shows detail. For reference, the original image is on the left; just under 6% of
the pizels in this image have been set to zero. The locations were chosen uniformly
at random, and pizels were knocked out in 3 x 3 blocks to produce the center image;
the image on the right has been reconstructed by finding the closest 7 x 7 patch that
matches the patch surrounding the knocked out block (but doesn’t have a knocked out
pizel in it), then replacing the knocked out block with the center of the patch. Look
for problems by finding a black block in the center detail image that is replaced by
an implausible pizel in the right image (a fruitless search!). Image credit: Figure
shows my photograph of vegetation in Sao Paulo.

shows an example.

This procedure works for blocks of pixels that have been knocked out as well,
with minimal changes. Figure 10.4 shows an example where 3 x 3 blocks of pixels
have been knocked out.

Incremental Inpainting

Now imagine that the process that knocks out pixels doesn’t just choose pixels at
random, but has some some kind of spatial structure. For example, you might have
an image with writing on it, and want to replace the writing. Alternatively, the
image might have one more more large holes in it.

The pixel inpainting procedure above will work, but some details need to
change. When isolated pixels are knocked out, you expect that the patch around
the pixel is known. If the image has a large hole in it, this no longer applies. Fixing
a pixel requires you have at least some known pixel values close to it. Choose such
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FIGURE 10.4: Incremental inpainting can fill in large holes. On the top left, an
image with a large hole in it; top right shows the inpainted image, using 11 x 11
patches and a radial order. Alternatives appear in Figure ?7. Image credit: Figure
shows my photograph of vegetation in Sao Paulo.

a pixel, and match the patch using the known pixels only. You can do this with a
mask that zeros the contribution of knocked out pixels to the SSD. This produces
a pool of matches. Now estimate the value of the pixel using this pool. For the
moment, choose the center of the best match. Place this value in the image, and you
now have an image with a slightly smaller hole in it, so you should be able to find
more candidate pixels for replacing. In this incremental reconstruction approach,
the order in which you visit pixels and the size of the patch becomes important and
can quite strongly affect the result.

As Figure 10.4 shows, really quite large holes in images can be fixed quite
satisfactorily in this way. The scale of the patch and the order of inpainting mat-
ters a lot (Figure 10.5). Top down, left to right order means the pixels are ordered
by vertical coordinate, then by horizontal coordinate. This tends to produce some-
what disordered inpaintings, because some pixels with all-inpainted neighbors are
inpainted before others with known neighbors. Radial order means that pixels on
the edge of the blob are filled in first, so pixels with more known neighbors are
inpainted first. This tends to preserve structure. Notice also the effect of the scale
of the patch. Matching larger patches tends to reproduce more long-scale struc-
ture, as you should expect. For example, the regions inpainted with larger patches
appear to have leaves and stems in them.

Texture Synthesis by Incremental Reconstruction

Imagine you have a small texture image you would like to make larger, where the
larger image should have the same texture as the original part. There are a variety
of application reasons to do this. For example, you might want to apply a texture
to a computer graphics model. Just tiling the texture won’t work. The patches
may not join up properly, and even if they do the periodic structure that results
looks bad (exercises ). Think of the problem as a rather odd inpainting problem
— rather than knocking out a block of pixels, the noise process has obscured pixels
outside the image.

It is straightforward to extend the incremental inpainting procedure to make
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FIGURE 10.5: The size of the patch you use in matching and the order in which you
inpaint pizels have significant effects on the results of incremental inpainting. This
figure shows a detail of Figure 10.4, with the blob inpainted in four different ways:
patch size differs from row to row, order from column to column. Details in main
text. Image credit: Figure shows my photograph of vegetation in Sao Paulo.

a larger texture image from a small one. Find a pixel location whose value isn’t
known, but where many neighbors have known values. Find matching patches in
the known parts of the image, where you compute the SSD using only the known
pixel values. Now choose the center pixel value from the pool of matching patches
at random (rather than using the best match). The value of this pixel is now known,
and you can iterate. The result is a synthesized texture image. Figure 10.7 shows
an example.

It is quite important to have several patches to choose the pixel value from, and
to choose at random. This prevents the texture you synthesize from being overly
repetitious or even constant. The size of the patch you use also has important
effects (Figure ?7)

10.2 DENOISING WITH PATCHES

Inpainting relies on a somewhat specialized model of noise. A small fraction of
pixels need fixing, you which ones they are, and other pixel values are reliable. If
the noise is, say, additive gaussian noise, these constraints don’t apply. In turn, this
means that all the pixels surrounding the pixel you want to fix may be somewhat
wrong as well, so matching using their values may not be wise.
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FIGURE 10.6: Synthesizing a texture image from a small example using incremental
reconstruction, and works for textures where the repeated structure isn’t obvious.
The case on the left is a texture that is quite periodic, but with random defor-
mations. Notice how realistic the synthesized texture seems to be, and look for
repeated cells (they are hard to find). The case on the right shows a small piece
of text from a document that was well known in 1999, together with a synthesized
image expanding that example. Text is hard, because although it does have struc-
ture (lines), it isn’t periodic. Notice how the synthesized text is almost readable.
Image credit: FElements of Figure 3 from “Texture Synthesis by Non-parametric
Sampling”, IEEE International Conference on Computer Vision, Corfu, Greece,
September 1999. No permission yet

Non-Local Means

Here is one strategy to exploit the other patches. Estimate the true value of the
pixel in the center of a target patch as a weighted sum of all other pixels, where
the weight is big when the patch around the pixel is similar to the target patch and
small when it isn’t. These weights should be normalized to add up to one. The big
difference between this strategy and filtering is that distant pixels can contribute
if they are in comparable patches. This approach should yield a good estimate of
the true value, at a ferocious cost. You need to look at every pixel in the image to
estimate the true value of a single pixel, so estimating the whole image is quadratic
in the number of pixels.

The approach is easily formalized. Write K(p;j, puy) for a function that
compares an image patch p;; around the 4, j’th pixel with the image patch around
the u, v’th pixel. This function should be large when the patches are similar, and
small when they are different. A useful estimate of the pixel value x;; at ¢, j is then

Z K(Pijs Puv)Xuw
weimage Zkleimage K(pij, Pim)
Notice that the weights sum to one. The estimate clearly depends quite strongly
on the choice of K.
The gaussian Kernel: One natural choice uses SSD between patches. Write
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FIGURE 10.7: The size of the patch used for texture synthesis matters a great deal.
Various synthesized textures using differently sized windows and the same original
example image. The smallest window cannot see the whole of a Ting; the next can,
but does not see that spacing is reqular; a larger window can see relatively reqular
spacing; and a very large window simply copies the example. Image credit: FEle-
ments of Figure 3 from “Texture Synthesis by Non-parametric Sampling”, IEEE In-
ternational Conference on Computer Vision, Corfu, Greece, September 1999. NoO
permission yet

Additive gaussian noise, 0.1  gaussian smoothing, 0=2 gaussian smoothing, 0=4
PSNR=18.4 PSNR=18.0
LAB > RGB >
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FIGURE 10.8: Top row: Gaussian smoothing suppresses noise, but blurs edges,
whereas non-local means preserves edges while smoothing gaussian noise (bottom
row ). Image credit: Figure shows my photograph of a building in downtown Man-
aus.
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NSSD(pij, Puv)) for the sum of squared differences between the two patches nor-
malized to deal with the number of pixels in the patch (exercises), write o for some
scale chosen to work well, note that I have suppressed the size of the patch, and

use
(*NSSD(pij,pqu

KNSSD (pija puv) =e€ 202
The method described here is sometimes known as non-local means. As described,
it is very slow (quadratic in the number of pixels). Methods to speed it up remain
difficult, and are out of scope (exercises ). As Figure 10.8 shows, non-local
means can suppress a great deal of noise without blurring edges.

Some details are important. Using larger patches will tend to increase the
computation time, and can improve denoising up to a point. If the patch is too
small, there will be many matches but some noise will be preserved. Similarly, if
the patch is too large, there will be too few matches to be helpful. Further, the
choice of color representation has an effect (see Figure 10.8). You should expect
this. RGB values are somewhat correlated (Section 7.1.1), while LAB values are
not. This means that some SSD values computed from RGB will overstate the
difference between patches (exercises ).

The gaussian kernel weights down patches that are different from the target
patch, but pays no attention to the distance between patches. A natural extension,
known as the bilateral filter, downweights patches based on their distance. This
gives

(-NSSDwyj pu))  ([6mm2+G-02])

202

Kbllat (pij? puv) =e 202 e ]

where o4 controls the rate at which a patches contribution falls off with distance.
The bilateral filter admits significant speedups (exercises ).

10.3 DENOISING AND REPRESENTING IMAGES WITH PATCH DICTIONARIES

10.3.1

Hierarchical K Means and Approximate Nearest Neighbors

There is really no reason to believe the best match to a patch you want to recon-
struct is in the image you are reconstructing. There is often a very good one, as
Chapter 10 showed, and this can be convenient because there aren’t that many
patches in the image. Instead of looking in the image for patches, you could build a
very large dictionary of patches taken from some collection of reference images, then
reconstruct using that. The key questions here are how to control the complexity
of the dictionary, and how to find the closest patch to your patch.

In principle, finding the closest patch is an instance of a standard problem,
that is, high dimensional nearest neighbors — find the point in a very large collection
of points that matches a query point, where all points are high dimensional vectors.
Unfortunately, this problem is extremely nasty, and computational geometers have
found it very hard to get a meaningful complexity improvement over the obvious
procedure of measuring the distance between each point and the query, then taking
the smallest. But the obvious procedure is unmanageably slow for our purposes.

It turns out that relaxing the problem slightly offers important complexity
improvements. Instead of finding the nearest neighbor, find a point that is very
often about as close to the query point as the nearest neighbor is (the exact meaning
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FIGURE 10.9: Finding an approximate nearest neighbor using hierarchical k-means
s easy, but finding the true nearest neighbor is much harder than it looks. On the
left, a set of data points in 2D. The red lines delineate the regions of the plane
that are closest to the three cluster centers at the root of the tree (red points).
Two of these regions are leaves of the tree. The third is subdivided (green lines
delineate the different cells of points that are closest to the cluster centers which are
shown as green points). On the right, the tree drawn as an abstract tree. Each
data point has been colored with which leaf it belongs to for the abstract tree and the
plane drawing. This tree is queried with the point drawn as a star. Notice that the
nearest neighbor is not in the cell that the query point is in (it’s on the other side
of a red line). In fact, to find the nearest neighbor, you would need to go up to the
root of the tree and then down to the correct leaf.

of “very often” and “about as close” need not concern us, but the details have been
worked out). The relaxed problem is often known as approximate nearest neighbors.

Here is a procedure to find approximate nearest neighbors. Build a tree out of
the dictionary of patches using hierarchical k-means. Each leaf of the tree contains
a set of data points that are close to one another, by construction. Find the closest
point to a query point by passing the query point down the tree. Do this by
recursively choosing the child whose cluster center is closest to the query point
until you hit a leaf. Now choose the data item in the leaf that is closest to the
query point.

This procedure does not yield the nearest neighbor, even in 2D (Figure 77?),
but it has a strong chance of yielding a patch that is as close as the nearest neighbor.
You may think it easy to obtain the nearest neighbor by some form of tree walk:
it is not. It is straightforward to come up with examples where the tree is a great
deal more complicated than the one shown in this figure, and the walk required to
find the nearest neighbor is larger. The 2D example suggests that each cell in the
tree has few neighboring cells, so you could just check every neighbor of the cell in



10.3.2

178  Chapter 10 Using Patches to Inpaint and Denoise

inal Patgh (31.2) Mean (24.5) | Patch

3x3, dictionary 1 5x5, dictionary 1

FIGURE 10.10: Patch based reconstructions using patches from large image dictio-
naries can be very successful. On the left, the original image. Others show re-
constructions using the approximate nearest neighbor (Patch) or the mean of the
query cell (Mean) using patches of the size indicated. For these reconstructions,
the patches overlap and are averaged (the stride is always 1). The PSNR of the re-
construction is shown in parentheses for reference. In each case, the tree contained
1e7 patches, taken from approximately 200, 000 images in the ImageNet test dataset
(Section ??), and contains no patches from this image. ITmage credit: Figure shows
my photograph of a sweetshop in Beijing.

which the query lands. This isn’t practical: the number of neighboring cells could
grow exponentially with dimension (exercises ). With that said, the procedure
I have described is extremely useful and widely reliable in practice (versions in
Sections ??, 7?7 and ?7).

Simple Reconstruction and Denoising with Patches

Once you have a big dictionary which has a tree structure so you can find an
approximate nearest neighbor, reconstructing an image is relatively straightforward:
turn the image into patches, replace each patch in the image with an approximate
nearest neighbor, then turn the patches into an image. There are two questions of
detail: precisely which patch you recover from the tree and whether the patches
overlap or not.

Recovering a patch from the tree: You could simply do what Sec-
tion 10.3.1 describes. As Figure 10.10 shows, a large patch dictionary (in this
case le7 patches from about 2eb images) gives a very good reconstruction of an
image that wasn’t used to build the dictionary — image patches are shared across
images. This might not be the best estimate of the matching patch. The dictionary
is built out of images that may themselves be noisy. The leaves of the tree used
for matching each contain a set of patches which should be quite similar to one
another (exercises ). These might be noisy, and so you could to suppress this
noise by averaging this set. In this case, each leaf of the tree contains one patch —
the average of the data — and any query that arrives at the leaf gets this patch as a
response. As Figure 10.10 shows, this strategy results in a reconstruction that isn’t
as good as the one an approximate nearest neighbor provides, but is quite good.

Overlapping patches: decomposing images into patches is straightforward
(most APIs will do this for you without drama), but you do need to think about
whether the patches overlap and by how much. If the patches do not overlap,
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FIGURE 10.11: Choosing whether patches overlap or not has significant effects. On
the left, the original image. Others show reconstructions using the approzimate
nearest neighbor (Patch) or the mean of the query cell (Mean) using patches of
the size indicated. For these reconstructions, there is no overlap of patches, which
butt against one another (so the stride for 3 x 3 patches is 3, and for 5 x 5 patches
is 5). Notice the blocky structure in the reconstructed images, and the decline in
PSNR compared to Figure 10.10. In each case, the tree contained 1e7 patches, taken
from approzimately 200, 000 images in the ImageNet test dataset (Section ?7?), and
contains no patches from this image. Image credit: Figure shows my photograph of
a sweetshop in Beijing.

then recovering the image from the patches is easy (you just tile them) but there
might be nasty visible boundaries where the tiles butt against each other. A grid
like this is usually very easy to spot, and users spot it easily (Figure 10.11 shows
examples of the effect). If the patches do overlap, reconstructing the image from
the patches requires some thought because you will have multiple matched patch
values at every pixel location and they will likely not agree. The usual strategy is
simply to average them, which can cause some loss of detail (this is the strategy of
Figures 10.10).

As Figure 10.10 shows, a large enough dictionary will represent a new image
well. In turn, you can expect replacing an image patch with its approximate nearest
neighbor should denoise the image well, at least for some kinds of noise. Assume
the noise maps a patch to one that is “near” the original (as, for example, Gaussian
noiatese will). Then the noisy patch should usually be in the same cell as the original
patch (check Figure ?? if you're uncertain; exercises ). Now think about the
approximate nearest neighbor to the noisy patch. Quite often, this should be the
same as the approximate nearest neighbor of the original patch. Even if it is not,
it should seldom be far away, because all the data points in a cell are quite close.
Replacing each patch with its approximate nearest neighbor denoises an image
rather well, as Figure 77 shows.

All of these statements depend on having a good, comprehensive dictionary
of patches. Ideally, the dictionary should hold something close to any actual image
patch you encounter. The usual strategy is to collect a large number of diverse
images (or, as I have done, use someone else’s published collection). You should not
extract too many patches from each image in the collection, because these patches
are likely somewhat correlated (otherwise the methods of Chapter 10 would not
work). Whether an image collection is big enough depends on the size of the patch
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FIGURE 10.12: Approzimate nearest neighbor matching yields quite good denoising.
On the left, a noisy version of the image of Figure 10.10. Others show reconstruc-
tions using the approximate nearest neighbor (Patch) or the mean of the query cell
(Mean) using patches of the size indicated. For these reconstructions, the patches
overlap and are averaged (the stride is always 1). In each case, the tree contained
1e7 patches, taken from approzimately 200, 000 images in the ImageNet test dataset
(Section ??), and contains no patches from this image. Image credit: Figure shows
my photograph of a sweetshop in Beijing.

you are working with (Figure 10.13).

10.4 VECTOR QUANTIZATION

10.4.1

Replacing all training data that arrives at a leaf with the mean of that data doesn’t
affect reconstructions much, as the figures show. This is the key observation un-
derlying a procedure known as vector quantization.

Vector quantization encodes continuous vectors of fixed dimension (like patches)
as short codes. Find a large number of examples and cluster them using whatever
procedure appeals. At each cluster center, place a unique code. Now encode a new
vector by (a) finding the closest cluster center and then (b) reporting that cluster
center’s code. Optionally, keep a table linking codes to cluster centers, so that you
can reconstruct something close to the signal from the code.

Mostly, I've already done an example. When you replace training data that
arrives at a leaf with the mean of that data, you are reconstructing cluster centers
— the cluster is the set of data items in the leaf — from a code for that leaf. The
example shows that this reconstruction is quite accurate, but it doesn’t show how
useful the procedure is.

Vector Quantization for Noise Suppression

Vector quantization can suppress noise rather well (Figure 10.12). The cluster
center closest to the query patch from the noisy image is usually closer to the true
underlying patch than the query patch is. When this happens and you replace
the query patch with the cluster center you get a reconstruction that is closer to
the true image than the original noisy image was. On occasion, the cluster center
closest to the query patch is further from the true patch than the query, and so the
reconstruction produces occasional large errors. Averaging overlapping patches will
tend to reduce the effects of these errors. Chapter 7?7 gives an extremely important
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FIGURE 10.13: The number of patches in the tree has important effects on the re-
construction. On the left, a noisy version of the image of Figure 10.10. Others
show reconstructions using the approximate nearest neighbor (Patch) or the mean
of the query cell (Mean) using 5 x5 patches. For these reconstructions, the patches
overlap and are averaged (the stride is always 1). For dictionary 1, the tree con-
tained 1e7 patches taken from approzimately 200, 000 images in the ImageNet test
dataset (Section ??) and had about 2000 leaves. For dictionary 2, the tree contained
be7 patches taken from approrimately 1.2e6 images. Neither dictionary contains
patches from this image. Image credit: Figure shows my photograph of a sweetshop
in Beijing.

application of this simple idea.

Vector Quantization to Build Features

Typical of signals like sound, images, video, and so on is that different versions of
the same thing have different sizes. Instances of the same sounds can last for dif-
ferent times; pictures appear at different resolutions; videos can appear at different
resolutions in space and time. This is inconvenient, because the linear classifier
of Section 21.2.1 requires a vector of fixed dimension. Chapter 23 showed a very
important modern construction for images.

Here is a somewhat older construction that remains useful because ti can be
so widely applied. Choose a patch size and some appropriate number of cluster
centers. Represent the signal by cutting it into patches of fixed size, and turn these
into vectors. Cluster a large set of training vectors. Now use the resulting set of
cluster centers to represent a test signal by first vector quantizing each patch in the
test signal, then building a histogram of the cluster centers. This histogram has
fixed size (the number of cluster centers), and so can be used in a linear classifier.

Although the encoding of individual patches could be quite good, the his-
togram has little or no information about how the pieces of signal are arranged.
This depends to some extent on the degree to which patches overlap. So, for ex-
ample, the representation can tell whether an image has stripy or spotty patches
in it, but is unlikely to know where those patches lie with respect to one another
unless they are very large and overlap substantially. This is a much smaller problem
than your intuition might tell you — with some care as to details, this recipe yields
fast and moderately accurate image classifiers. There is a surprisingly simple con-
struction that improves such a classifier. Build three (or more) dictionaries, rather
than one, using different sets of training patches. For example, you could cut the



182  Chapter 10 Using Patches to Inpaint and Denoise

same signals into pieces on a different grid. Now use each dictionary to produce a
histogram of cluster centers, and classify with those. Finally, use a voting scheme
to decide the class of each test signal. In many problems, this approach yields small
but useful improvements.

This construction is now largely obsolete for image classification, but it illus-
trates an important principle. For at least some kinds of classification task, the
details of spatial layout don’t matter all that much. Just looking at the overall
composition of the image (i.e. “stripey” vs “spotty”) might get you where you
want to be.
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10.5 YOU SHOULD
10.5.1 remember these definitions:
The masked normalized SSD . . . . . .. .. . ... ... ...... 170

10.5.2 remember these procedures:
10.5.3 be able to:
e FOO
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EXERCISES

QUICK CHECKS
10.1.

10.2.
10.3.

10.4.
10.5.
10.6.

10.7.

10.8.

10.9.

Do you expect to observe every possible set of RGB pixel values in images?
why?

Why do you need a masked normalized SSD to inpaint missing regions?
Section 10.1.3 has: “Just tiling the texture won’t work. The patches may not
join up properly” — Explain.

You wish to inpaint an hole in an image. Why does the order you choose to
fill in pixels matter?

You wish to inpaint an hole in an image. Suggest a good order in which to
visit pixels to inpaint. Would this work for every case?

You want to increase the size of a patch of texture as in Section 10.1.3. Why
is it important to choose from several patches at random?

Section 10.3.2 has: “The leaves of the tree used for matching each contain a
set of patches which should be quite similar to one another” Why is this the
case?

Section 22.6 has: “Then the noisy patch should usually be in the same cell as
the original patch (check Figure 7?7)” Why is this the case?

You have two patch dictionaries that you use for denoising. Each performs
about the same at denoising tests. One is for 5 x 5 patches, and the other is
for 7 x 7 patches. Which one has more patches in it?

LONGER PROBLEMS

10.10. This exercise explores the expected effect of matching distance on inpainting.

(a) You inpaint a hole in a color image using patches from that image, but
matching using only intensity. Describe the errors you expect.

(b) Section 10.2.1 has: “ RGB values are somewhat correlated (Section 7.1.1),
while LAB values are not. This means that some SSD values computed
from RGB will overstate the difference between patches.” What effects do
expect from choosing RGB over LAB when you inpaint a hole in a color
image using patches from that image?

(c) Section 10.2.1 has: “ RGB values are somewhat correlated (Section 7.1.1),
while LAB values are not. This means that some SSD values computed
from RGB will overstate the difference between patches.” What effects do
expect from choosing RGB over LAB when you inpaint a hole in a color
image using a dictionary of patches built from many images?

10.11. This exercise explores the difficulty of improving approximate nearest neigh-

bor estimates by looking at neighboring cells.

(a) Divide d dimensional space into cells by splitting each dimension into k
intervals. Show there are k¢ cells.

(b) Divide d dimensional space into cells by splitting each dimension into k
intervals. Show most cells have 2% neighbors.

(¢) You have a query point that lies in a cell in a tree built by hierarchical
k means, and wish to improve your estimate of the approximate nearest
neighbor by looking at neighboring cells. How many neighboring cells
could there be? (careful — this number can’t exceed the number of leaves
on the tree).
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10.12. This exercise explores deblurring using patch based denoisers

(a) You deblur a lightly blurred image using a patch-based denoiser. What
errors do expect at patch boundaries?

(b) Could you improve the deblurring by working with overlapping patches?
In particular, imagine you deblur the first patch by matching; if the
patches overlap, you now have some information about the deblurred ver-
sion of the neighboring patches. Could you use it?

(¢) You choose to deblur a heavily blurred image using a patch-based denoiser
and non overlapping patches. What might go wrong?

(d) Could you improve the deblurring by working with overlapping patches?
In particular, imagine you deblur the first patch by matching; if the
patches overlap, you now have some information about the deblurred ver-
sion of the neighboring patches. Could you use it?

PROGRAMMING EXERCISES

10.13. This exercise will implement simple patch based inpainting for a single image.
It is straightforward to build a slow solution quickly. Take a textured color
image, at least 350 pixels on each edge, and replace a circular set of pixels with
radius at least 10 pixels in the center of the image with zeros. Now inpaint
this patch by matching 5 x 5 patches in that image, using the procedure in the
text. Assume that you know which pixels should be inpainted, and proceed in
angular order.

(a) What happens if you proceed in left to right order, starting at the top?

(b) What happens if use 21 x 21 patches instead?

(c) What happens if you match on intensity rather than RGB?

(d) Adjust patch size and matching order so you get the best result on your
original picture. Now take a second, substantially different, picture, make
a hole in it as in the first picture, and inpaint using your best settings. Is
the result still good? Can you improve on it?

10.14. This exercise will investigate non-local means based denoising. Implement
non-local means as described in the text. This is easy to do, but will be
agonizingly slow. Apply it to denoising one of the images in your collection
and compare the result if you denoise with a simple gaussian filter. For noise,
choose small numbers of pixels uniformly and at random and flip them to
randomly chosen colors. This is a case where you expect the gaussian filter to
perform badly. Is non-local means better? Is it better to use RGB or LUV
when denoising by smoothing with a gaussian?

10.15. This exercise will investigate non-local means based denoising in more detail.
Obtain at least 100 color images, at least 350 pixels on edge. You need a some-
what faster non-local means than you are likely to be able to write in reasonable
time. Use an API implementation of non-local means (I used the version in
scikit image which you can find at https://scikit-image.org/docs/0.25.x/
api/skimage.restoration.html#skimage.restoration.denoise_nl_means). Most
APIs have a slow version (essentially, an optimized version of what you did
in the previous subexercise) and a faster version (which uses a clever trick to
evaluate the distance between patches quickly and ignores patches that are too
far away).

(a) Split your set of color images into 20 train and 80 validation images. Use
the train images to choose the scale of the gaussian filter that gives the
best mean PSNR for denoising. For noise, choose small numbers of pixels
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(b)

uniformly and at random and flip them to randomly chosen colors. Use
the train images to choose the color representation (RGB or LUV) that
gives the best mean PSNR when denoising by smoothing with a gaussian.
Now compute the mean PSNR for denoising the test images using the
chosen color representation and gaussian scale.

Use the train images to choose settings for your API that produce the best
mean PSNR using the same noise model. Use these settings to compute
the mean PSNR for denoising the test images using the chosen settings.

10.16. This exercise will implement patch based denoising using a patch dictionary.
It is moderately elaborate.

(2)

(b)

(c)

(d)

(e)
()
()

Obtain a collection of at least 10, 000 varied images of a reasonable
size. I used the ImageNet validation dataset, which I found at https:
//www.kaggle.com/datasets/titericz/imagenetik-val, but there are
now many such. Another reasonable choice would be one of the Laion
datasets (start at https://laion.ai), but be aware these are huge. From
this dataset, build a collection of 100, 000 patches of size 5 x 5. I did so
by selecting two patches each in random locations from 50, 000 images.
Ensure your code will work for larger or smaller patches.

Using these patches and hierachical k-means, build a tree. Aim to have a
few hundred patches in each leaf, so your tree can be quite shallow if you
use a reasonable k (large numbers of 10s to small numbers of hundreds).
It’s a good idea to be confident that your tree is what you think it is and
that you can walk a patch down the tree before proceeding. You can do
so by passing in one of the original patches and checking you end up in
the leaf that contains it. Another useful check is adding a little noise to
original patches and checking that mostly you end up in the right leaf.
Obtain at least 100 images not in the original collection but of a com-
parable size. Add stationary additive independent zero mean gaussian
noise to these images, then reconstruct them using the patch dictionary.
To do this, find the leaf corresponding to the query patch, then find the
closest patch in that leaf. What mean PSNR do you get? is it better to
use overlapping patches or not? What happens if you replace the closest
patch in the leaf with the mean of the patches in the leaf?

Obtain at least 100 images not in the original collection but of a com-
parable size. For these images, choose small numbers of pixels uniformly
and at random and flip them to randomly chosen colors. Now reconstruct
them using the patch dictionary. To do this, find the leaf corresponding
to the query patch, then find the closest patch in that leaf. What mean
PSNR do you get? is it better to use overlapping patches or not? What
happens if you replace the closest patch in the leaf with the mean of the
patches in the leaf?

Can you improve your results in the last two subexercises by using larger
patches (but the same size dictionary)?

Can you improve your results in the last two subexercises by using larger
patches and a larger dictionary?

Can you improve your results in the last two subexercise by backtracking
in the tree? At a leaf, you backtrack by finding its parent, then finding
the child in the parent whose mean is next closest to the query patch,
then querying that leaf. Clearly, you can investigate more leaves, and go
higher up the tree. It is important to backtrack by only a fixed number
of probes (the leaves you look at), or else the procedure boils down to a
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very slow search of the whole tree.
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