
C H A P T E R 12

Applications of the Fourier
Transform

There are two applications of the Fourier transform that are important to us.
First, the convolution theorem has a number of interesting and useful consequences.
Second, the Fourier transform explains what is lost in sampling and why aliasing
occurs.

12.1 USING THE CONVOLUTION THEOREM

The convolution theorem (line 12 of Table ??) says convolution in the signal domain
is the same as multiplication in the Fourier domain. This makes it possible to
visualize the effect of a linear filter in the Fourier domain. Because the inverse
Fourier transform is a Fourier transform (up to a flip, above), the convolution
theorem works both ways. Multiplication in the signal domain is the same as
convolution in the Fourier domain.

12.1.1 Making Big Filters Faster with the FFT

One application of the convolution theorem illustrates some possible difficulties
building filters. Write

gσ(x, y) =
1

2πσ2
e
−
(
[x2+y2]

2σ2

)

then
F(gσ(x, y)) = Cg 1

2πσ
(u, v)

(where the constant C depends on σ). There is a big point here: a gaussian that is
spread out in x, y is concentrated in u, v, and vice versa. This is a rather distant
manifestation of Heisenberg’s uncertainty principle. Now consider building a low
pass filter that accepts a very small range of spatial frequencies. This could be
modelled as multiplying the Fourier transform of the image by a gaussian with very
small σ. The convolution kernel that implements this filter is the inverse Fourier
transform of this gaussian – which has very large σ. You would need a very large
convolution to implement this filter without further tricks.

This suggests, correctly, that in some cases, rather than convolving the image
with a filter, it is actually better: to apply an FFT to the image; multiply the result
by the FFT of the filter; then apply an inverse FFT to the result. Cases where
there is an efficiency gain exist, but are rather special.

Most practical applications of very large filter kernels involve very aggressive
smoothing. But if an image is going to be heavily smoothed, it will lose a lot of
detail, and the detailed form of the smoother might not matter much. Further,
applying a very large filter kernel to smooth is very expensive. If you are willing
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208 Chapter 12 Applications of the Fourier Transform

to accept a Gaussian smoother (the usual case), significant efficiency gains are
available. Recall that

gσ1
∗ gσ2

= g√
σ2
1+σ2

2

(exercises ). Equivalently, smoothing with a big Gaussian is equivalent to
smoothing with a smaller Gaussian, then smoothing again with that smaller Gaus-
sian. But once you have smoothed with a Gaussian, you can subsample, suggesting
that to smooth heavily, you should smooth lightly, subsample, smooth lightly again,
and so on. This is the gaussian pyramid of Section 3.2.5. Each layer of the gaussian
pyramid is obtained by convolving the previous layer with a gaussian, then down-
sampling. For the moment, ignore the downsampling, and write I for the image.
Then layer 0 is I and layer N is gσ ∗ gσ ∗ . . . ∗ I which is the same as gσ

√
N ∗ I.

Downsampling doesn’t really affect this argument (which is why I omitted it), but
just makes the convolution more efficient by removing redundant values.

These scaling effects are interesting for more than just gaussians. Imagine you
wish to find large stripes in a large image (which you could do by applying a large
convolution kernel to that image). A natural strategy is to downsample both kernel
and image, and apply the small version of the kernel to the small image. Further,
you could find many different sizes of stripe efficiently by applying one stripe filter
to each layer of a gaussian pyramid. Responses at the early layers give fine stripes,
and at the later layers give coarse stripes.

Line 8 of the table together with the convolution theorem supports this
idea. Imagine you have a filter f(x, y) that detects a small pattern. Then (say)
f(x/10, y/10) will detect a larger version of this pattern. Now line 8 shows that the
Fourier transform of this new scaled filter will shrink by a factor of 10 in u, v space.
In turn, the value depends on only low spatial frequencies. In turn, not much will
be lost if you apply the scaled filter to a low pass filtered version of the image.
Further, applying the scaled filter to a low pass filtered version of the image will
be equivalent to applying the original filter to a scaled version of the image (line 8
again). But this is equivalent to applying the original filter to a downsampled layer
of the gaussian pyramid.

Remember this: You very seldom need to apply a very large filter
to an image. When you do need to, the FFT may be more efficient than
convolution. If you are using a very large filter to find a very large pattern,
it is more efficient to downsample the image and look for a smaller pattern
in the lower resolution image.

12.1.2 Ringing

Recall the ringing effect of Figure 3.8. Here smoothing by just computing an un-
weighted average managed to create some unexpected fine details. A Fourier trans-
form offers an easy explanation – the magnitude of the Fourier transform of the
unweighted averaging filter falls off much more slowly with frequency than that of
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FIGURE 12.1: A Fourier transform explains where the ringing of Figure 3.8 comes
from. The top row shows the magnitude spectrum of the beard image. I have shown
the actual magnitude (rather than log magnitude), because doing so makes the issue
clearer. The first image shows the magnitude clipped to the range 0-1 (this is all
light); the second the magnitude clipped to the range 0-10; the third, clipped to the
range 0-100; and the fourth, clipped to the range 0-1000. Center left shows the
magnitude of the Fourier transform of the unweighted averaging filter, and the rest
of the images are the magnitude of the Fourier transform of the filtered images,
clipped to the ranges as for the original image. Bottom left shows the magnitude
of the Fourier transform of the Gaussian filter, and the rest of the images are the
magnitude of the Fourier transform of the filtered images, clipped to the ranges as
for the original image.

the Gaussian filter. In turn, the unweighted averaging filter preserves some high fre-
quencies, which are the ringing effect. The effect is quite difficult to see if one looks
at the log of the Fourier transform magnitude, so Figure 12.1 shows the magnitude.
Because the magnitude has very large dynamic range, I have shown the magnitude
clipped to a variety of different ranges. Notice how the unweighted averaging filter
has some high frequency terms that are much larger than Gaussian filter terms
at the same frequency. These terms mean the image filtered with the unweighted
average filter has considerable high frequency energy at some frequencies – these
terms are the ringing.
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Remember this: Smoothing by just computing an unweighted local
average creates unexpected fine details. This ringing, which occurs with
other filters as well, is explained by the convolution theorem and the Fourier
transform of the filter kernel.

12.2 SAMPLING AND ALIASING

The crucial reason to discuss Fourier transforms is to get some insight into the
difference between discrete and continuous images. In particular, it is clear that
some information has been lost when you work on a discrete pixel grid, but what?
From Figure 3.4, the problem has to do with the number of samples relative to the
function. You can formalize this rather precisely using Fourier transforms.

12.2.1 Modelling a Sampled Function

A crucial step is a reasonable model of a sampled function. Passing from a contin-
uous function—like the irradiance at the back of a camera system—to a collection
of values on a discrete grid —like the pixel values reported by a camera—is referred
to as sampling. Sampling must lose information about the original function (for
example, see Figure 3.4). Accounting for what is lost requires building a model of
the sampling process quite carefully.

Write
sample2D(f)

for an operation that takes a continuous function in 2D and returns a sampled
version. The sampled version should represent the values of f at all integer points
(you can get any other uniform grid with a scale). It is highly desirable that
sample2D(f) produce a result that is compatible with integration. In particular,
that ∫

g(u, v)sample2D(f)dudv ≈
∫
g(u, v)f(u, v)dudv

to the extent possible for any g(u). Recall the definition of the δ function in 2D
(Definition 11.3). It turns out that the right choice for sample2D(f) is

sample2D(f) =
∑
ij

f(i, j)δ(x− i, y − j)

The grid is infinite in each dimension to avoid having to write ranges, etc. (Fig-
ure 12.2). The δ function is a conceptual device to make the mathematical plumbing
work properly. There is no need to place one at each sample function in an array
inside your programs (and you can’t – you’d have to have an opinion about the
value of δ(0), which isn’t going to work out). This definition yields a model which
behaves well for integrals. In particular,∫

g(u)sample2D(f)du =
∑
ij

f(i, j)g(i, j)
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Sample2D

FIGURE 12.2: Sampling in 2D takes a function and returns an array; again, we allow
the array to be infinite dimensional and to have negative as well as positive indices.

which is the best approximation to the integral that you will get if you know f(u, v)
only at integer points (exercises ).

A regular grid is enough of a model for our purposes, though some practical
systems have samples that are not evenly spaced. Older television sets had an
aspect ratio of 4:3 (width:height), though 16:9 is commone for more recent sets.
Cameras quite often accommodated this effect by spacing sample points slightly
farther apart horizontally than vertically (in jargon, they had non-square pixels).
It is unusual to encounter these effects now.

The sampling model may look strange to you, but respects convolution in an
interesting way. Choose some continuous convolution kernel g(x, y). If you convolve
sample2D(I) with g(x, y), then sample the result, you get what you would have
gotten if you convolve I with sample2D(g) and sampled that exercises .

12.2.2 Interpolation: Passing from Discrete to Continuous

Recall the interpolate of Section 3.1 had the form

I(x, y) =
∑
i,j

Iijb(x− i, y − j).

Here b is some function with the properties b(0, 0) = 1 and b(u, v) = 0 for u and v
any other grid point. This is linear and shift invariant (exercises ) so it must
be a convolution. The way to see the convolution is to use the model of sampling,
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above. This exposes the convolution in interpolation. Check that

sample2D(I) ∗ b =

∫ ∫ ∑
ij

Iijδ(x− u− i, y − v − j)b(u, v)dudv

=
∑
ij

Iij
∫ ∫

δ(x− u− i, y − v − j)b(u, v)dudv

=
∑
i,j

Iijb(x− i, y − j) from the property of a δ function

which is the form of an interpolate.

Remember this: The process of sampling a function is modelled using
δ functions. These ensure that integrals of the sampled function have sen-
sible values. Interpolation is a process of convolution that takes a sampled
function to a continuous function.

12.2.3 The Fourier Transform of a Sampled Signal

As Section 12.2.2 showed, an appropriate continuous model of a sampled signal
consists of a δ-function at each sample point weighted by the value of the sample
at that point. You can obtain this model by multiplying the sampled signal by
a set of δ-functions, one at each sample point. In one dimension, a function of
this form is called a comb function (because that’s what the graph looks like). In
two dimensions, a function of this form is called a bed-of-nails function (for the
same reason). By the convolution theorem, the Fourier transform of this product
is the convolution of the Fourier transforms of the two functions. This means that
the Fourier transform of a sampled signal is obtained by convolving the Fourier
transform of the signal with another bed-of-nails function.

Now convolving a function with a shifted δ-function merely shifts the function
(exercises ). This means that the Fourier transform of the sampled signal is
the sum of a collection of shifted versions of the Fourier transforms of the signal.
Formally,

F(sample2D(f(x, y))) = F

f(x, y)


∞∑
i=−∞

∞∑
j=−∞

δ(x− i, y − j)




= F(f(x, y)) ∗ F


∞∑

i=−∞

∞∑
j=−∞

δ(x− i, y − j)




=

∞∑
i=−∞

F(f)(u− i, v − j),
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FIGURE 12.3: The Fourier transform of the sampled signal consists of a sum of
copies of the Fourier transform of the original signal, shifted with respect to each
other by the sampling frequency. If the shifted copies do not intersect with each
other (as in this case), the original signal can be reconstructed from the sampled
signal (just cut out one copy of the Fourier transform and inverse transform it).

(where F(f)(u− i, v − j) is the Fourier transform of f , evaluated at u− i, v − j).
If the support of these shifted versions of the Fourier transform of the signal does
not intersect, reconstructing the signal from the sampled version is straightforward.
Take the sampled signal, Fourier transform it, and cut out one copy of the Fourier
transform of the signal and Fourier transform this back (Figure 12.3).

However, if the support regions do overlap, you are not able to reconstruct the
signal because you can’t determine the Fourier transform of the signal in the regions
of overlap, where different copies of the Fourier transform will add. This results in
a characteristic effect, usually called aliasing, where high spatial frequencies appear
to be low spatial frequencies (see Figures 12.5, 12.6 and exercises). Our argument
also yields Nyquist’s theorem: the sampling frequency must be at least twice the
highest frequency present for a signal to be reconstructed from a sampled version.
By the same argument, if you happen to have a signal that has frequencies present
only in the range [(2k − 1)ω, (2k + 1)ω], then we can represent that signal exactly
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FIGURE 12.4: The Fourier transform of the sampled signal consists of a sum of
copies of the Fourier transform of the original signal, shifted with respect to each
other by the sampling frequency. If the shifted copies intersect (as in this figure),
the intersection region is added, and so you cannot obtain a separate copy of the
Fourier transform, and the signal has aliased. This also explains the tendency of
high spatial frequencies to alias to lower spatial frequencies.

if we sample at a frequency of at least 2ω.

Nyquist’s theorem means that, to avoid aliasing, you should either sample a
continuous function at a high enough sampling rate (the Nyquist limit – twice the
highest frequency present in the function) or low pass filter the function before you
sample it. This filter should (at least!) remove all frequencies above half the sam-
pling rate. You can’t do this exactly, making exact reconstruction at the Nyquist
limit unobtainable. You may think you could reconstruct exactly by multiplying
the function’s Fourier transform by a scaled 2D box function, but doing so is equiv-
alent to convolving the function with a kernel that has infinite support (convolution
theorem, and line 7 of table ??), which is impossible.

A gaussian is a low-pass filter because its response at high spatial frequencies
is low and its response at low spatial frequencies is high, so the downsampling
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512x512 256x256 128x128 64x64

FIGURE 12.5: The top row shows sampled versions of an image of a 512x512 grid
obtained by multiplying two sinusoids with linearly increasing frequency—one in x
and one in y. The other images in the series are obtained by resampling by factors
of two without smoothing. These have been scaled to the same size. Note the
substantial aliasing; high spatial frequencies alias down to low spatial frequencies,
and the smallest image is an extremely poor representation of the large image.
The bottom row shows the Fourier transforms of these images, again scaled to
be the same size. Notice how with downsampling by two, the Fourier transform
looks like the center block of the Fourier transform of the original image. When the
downsampling is more aggressive, the Fourier transform becomes very different – the
overlaps are now so pronounced that the sum of shifted original Fourier transforms
is very different from the original Fourier transform.

process of Section 3.2.3 is justified. In fact, the Gaussian is not a particularly
good low-pass filter. It is possible to design low-pass filters that are significantly
better than Gaussians. The design process involves a detailed compromise between
criteria of ripple—how flat is the response in the pass band and the stop band?—
and roll-off—how quickly does the response fall to zero and stay there? Mostly,
the advantages of being able to use a gaussian pyramid and the complexities of
better filter design mean that, in practice, smoothing for subsampling is done with
a gaussian.

12.2.4 Smoothing and Downsampling

It is easier to explain sampling and aliasing in the context of passing from a contin-
uous signal to a sampled signal. But in practice, you have an image that has been
sampled already and you want to downsample it. Nyquist’s theorem applies here,
too. The Fourier transform of the sampled image consists of a set of copies of some
original Fourier transform, with centers shifted to integer points in u, v space. This
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512x512 256x256 128x128 64x64

FIGURE 12.6: The top row shows sampled versions of an image of a 512x512 grid
obtained by multiplying two sinusoids with linearly increasing frequency—one in x
and one in y. The other images in the series are obtained by smoothing with a
Gaussian of σ = 1, then resampling by factors of two without smoothing. These
have been scaled to the same size. Compare this figure with Figure 12.5. The
smallest image is now a better representation of the large image. The bottom row
shows the Fourier transforms of these images, again scaled to be the same size.
Notice how with downsampling by two, the Fourier transform looks like the center
block of the Fourier transform of the original image. When the downsampling is
more aggressive, the Fourier transform still looks a bit like the center block, but now
low-pass filtered.

is true whether there is aliasing or not.

If the sampled image is downsampled by two, for example, the copies now
have centers on the half-integer points in u, v space. You don’t know the original
Fourier transform and can only infer it from the sampled image’s Fourier transform
(you could use the procedure of Figure 12.3). This means that if the original
sampled image has aliasing you can’t get rid of it by downsampling (Figure 12.4).
You can make the aliasing worse, however. If you downsample, you are moving
the shifted copies closer together, and risking an overlap. To avoid this overlap,
requires applying a filter that strongly reduces the content of the original Fourier
transform outside the range |u| < 1/2, |v| < 1/2 before you resample the signal.
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Remember this: Fourier theory explains aliasing. The Fourier trans-
form of a sampled signal is the sum of a set of shifted copies of the Fourier
transform of the original signal. If these copies overlap, then you can’t
reconstruct the original signal from the sampled signal. If they don’t, you
can. To avoid aliasing, either sample often enough or apply a low-pass filter
before sampling. All these observations apply to resampling as well as to
sampling.
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12.3 YOU SHOULD

12.3.1 remember these definitions:

12.3.2 be able to:

• Apply the convolution theorem to explain ringing.

• Understand Nyquist’s theorem

• Recognize interpolation as a convolution.
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EXERCISES

QUICK CHECKS

12.1. Is f ∗ g ∗ h the same as g ∗ f ∗ h? (use the convolution theorem).

12.2. Convolution in the Fourier domain is equivalent to what in the signal domain?

12.3. Section 12.1 has: “But if an image is going to be heavily smoothed, it will lose
a lot of detail, and the detailed form of the smoother might not matter much.
” Explain.

12.4. Section 12.1 has: “Imagine you have a filter f(x, y) that detects a small pattern.
Then (say) f(x/10, y/10) will detect a larger version of this pattern.” Explain.

12.5. Finding a pattern in a smoothed and downsampled version of the image is
largely equivalent to finding a large version of the pattern in the original image.
Explain.

12.6. Will ringing affect a gradient estimate?

12.7. Check that
∫
g(u)sample2D(f)du =

∑
ij f(i, j)g(i, j).

12.8. Section 22.6 has:”This definition yields a model which behaves well for inte-
grals. In particular,∫

g(u)sample2D(f)du =
∑
ij

f(i, j)g(i, j)

which is the best approximation to the integral that you will get if you know
f(u, v) only at integer points.” Explain.

12.9. Write an expression for what you would get if you convolve sample2D(I) with
g(x, y), then sample the result.

12.10. Write an expression for what you would get if you convolve I with sample2D(g),
then sample the result.

12.11. Section 12.2.3 has:”convolving a function with a shifted δ-function merely
shifts the function”. Show this is true.

12.12. Section 12.2.4 has: “If the sampled image is downsampled by two, for example,
the copies now have centers on the half-integer points in u, v space.” Explain.

LONGER PROBLEMS

12.13. Write

gσ(x, y;σ) =
1

2πσ2
e
−
(
[x2+y2]

2σ2

)
.

(a) Show that

F(gσ(x, y)) = Cg 1
2πσ

(u, v).

What is C?
(b) Assume ξ1 is a random variable with a normal distribution with mean

0 and standard deviation σ1; and ξ2 is a random variable with normal
distribution with mean 0 and standard deviation σ2. Then ξ1 + ξ2 is
normal. Show that this has mean 0 and standard deviation

√
σ21 + σ22 .

(c) Show that ξ1 + ξ2 is distributed as∫
u

gσ1(u)gσ2(x− u)du.
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(d) Show that
gσ1 ∗ gσ2 = g√

σ2
1+σ2

2
.

12.14. The δ function isn’t really a function (what value does it take at 0?) but it
can be seen as a limit of a variety of functions. As one example, show that

lim
ϵ→0

∫ (
1

ϵ2
box2D(x/ϵ, y/ϵ)

)
f(x, y)dxdy = f(0, 0)

(assuming that the limit exists).
12.15. (a) Check

sample2d(I) ∗ g =
∑
i,j

Iijg(x− i, y − j).

(b) Check

I ∗ sample2d(g) =
∑
i,j

Iijg(x− i, y − j).

(c)

PROGRAMMING EXERCISES

12.16. There are (at least!) two ways to apply a gaussian filter to an image. You
could convolve with the gaussian, or you could FFT the image, multiply the
result by a different gaussian, then inverse FFT. You expect that, for reason-
ably small σ, convolution is faster than the FFT strategy. It is possible that
if σ is large enough, the FFT strategy is better. Use whatever API appeals
(I used numpy) to compare the computational costs. Is there a value of σ for
your API where the FFT strategy is faster? How does the size of the image
affect this value?

12.17. Find an image with fine scale spatial details like the beard of Figure 3.8, and
use it to reproduce and explain Figure 12.1.


