CHAPTER 13

Voting and its Applications

Again and again, one needs to choose the “best” model to explain or represent
some tokens. One version of this problem is choosing a line to represent some tokens.
Another version is deciding which instance — for example, which book cover — is
present in an image. Now imagine you are given a set of points x; in one image
and a set of points y; in another, and must find a transformation 7 so that 7 (x;)
is close to y;. To see this as choosing a model, think of pairs (x;,y;) as tokens and
the transformation as the model.

There are two master recipes to solve versions of this problem. In one recipe,
each token votes in some way, and the model with the most votes is chosen. In
another, you set up an optimization problem describing the “best” model, then
search for a solution. This chapter describes voting methods. These methods
are now mostly not used in isolation, but can be quick and efficient solutions on
occasion.

13.1 REPRESENTING LINES AND PLANES

There are a number of representations of lines and planes. I will describe a set of
useful constructions and facts for lines; extending these to planes is straightforward
exercises . It is usual to write (z1,x2) for points in 2D, because you can then
extend to 3D without much difficulty.

Useful Fact: Do not represent a line as the set of points(x,y) where
y = ax + b or a plane as the set of points (x,y,z) where z = ax + by + c.
Vertical lines — where © is constant — and vertical planes — where ax+by+c
s a constant — cannot be represented in this form.

Useful Fact: Represent a line as the set of points x = (z1,22)7 where
axi +bxo +c =0 = alx + c and a plane as the set of points (21,2, 3)
where azy +bry +cr3+d=0=alx+d. A tuple (a,b,c) corresponds to a
line as long as not all elements are zero. A tuple (a,b,c,d) corresponds to
a plane, as long as not all elements are zero.

222

Section 13.2 The Hough Transform 223

Useful Fact: The line represented by (Aa, Ab, A\c) = (A\a, Ac) is the same
as the line represented by (a,b,c) = (a,c) for A # 0. This means that
many tuples represent the same line. Choosing to avoid this ambiguity by
requiring one element of the tuple to 1 means that you cannot represent
some collection of lines. For example, the family (u,v,1) omits any line
through the origin exercises

Useful Fact: The perpendicular distance from a point x to a line (a,c)
18 given by
abs(a’x + ¢) if ala=1.

In my experience, this fact is useful enough to be worth memorizing.

Useful Fact: The normal of a line represented as (a,b,c) = (a,c) is
given by

a

aTa

Useful Fact: If you represent a line by the tuple (cos0,sinf,r), where
0<7rand0 <60 < m, then all lines are represented, and there is exactly
one (,7) that corresponding to a given lineeXercises . For this represen-
tation, r is the perpendicular distance from the line to the origin and 0 is
the orientation of the line (meaning that the vector (sin@, — cos)T points
along the line).

13.2 THE HOUGH TRANSFORM

The Hough transform is a general voting procedure that applies to a wide range of
problems.

13.2.1

224 Chapter 13 Voting and its Applications

Procedure: 13.1 Hough transform: Master recipe

This recipe applies when you want to find a structure in a set of tokens.
Allow each token to vote for all the structures that it could support.
Then the structure with the most votes is the one you want.

Making this recipe concrete requires a little work (below). This idea is very
seldom used directly for any problem, but it lies at the root of a wide range of ideas
and is so worth understanding with an example.

Finding a Line with a Hough Transform

Given a set of N tokens, you must choose a collection of lines that represent those
tokens. There may be more than one line, but there are many tokens on each line
(so just reporting one line per pair of distinct points is not helpful). The Hough
transform takes each token and casts a vote for every line that could pass through
that token, then analyzes the votes to find the lines.

Represent a line by the tuple (cos@,sinf,r), where 0 < r and 0 < 6 < 7.
Because the image has a known size, there is some R such that, if » > R, the lines
are too far away from the origin for any token to appear in the image. Line space
is the set of (#,7) such that 0 < r < Rand 0 < § < 7. A point in 2D given by
(w1, 22)T could lie on any line such that r = —x1 cosf + x5 sinf. Equivalently, a
point in 2D corresponds to a curve in line space.

Discretize line space with some convenient grid, where each grid element is
a bucket into which votes can be placed. This is the accumulator array. For the
i’th point token at x; = (z1 4, xQ’i)T7 visit every bucket on the curve in line space
given by r = —x;;cosf + x2;sinf and add one to the count of votes in that
bucket. Now analyze the accumulator array. If there are many point tokens that
are collinear, there should be many votes in the grid element corresponding to that
line (Figure 13.1).

To my knowledge, the Hough transform has not been used to fit lines in
practice for some time. The obstacles are worth understanding. Assume there is
only one line, and all tokens lie near it. Noise means tokens are not necessarily on
the line. This noise has a nasty effect on the accumulator array. When noise moves
a token in the image, the set of lines it will vote for in the accumulator array will
move too. The bucket corresponding to the right line will lose votes, and some other
buckets gain votes. If there is enough noise, the bucket with the largest number of
votes may not correspond to the right line.

Even if there is only one line, you should not expect all tokens lie near it.
Think about an image that is dark-ish on one side of a line and light-ish on the
other. Texture or even image noise may generate tokens on either side that have
nothing to do with the line. These tokens tend to result in phantom lines — buckets
with many votes in them that do not correspond to actual lines (Figure 13.1).

Changing the quantization of the accumulator array might look as though it
could control noise effects. Votes that appeared in the same bucket in a coarsely
quantized accumulator array tend to miss one another in a finer array, so buckets

Section 13.2 The Hough Transform 225

Line Noisy line Uniform

.
. " .

Tokens

Accumulator array

0

FIGURE 13.1: The Hough transform maps each point like token to a curve of possible
lines (or other parametric curves) through that point. These figures illustrate the
Hough transform for lines. The top row shows tokens, and the bottom row shows
the corresponding accumulator arrays (the number of votes is indicated by the gray
level; largest number of votes is full bright). Left: 20 points drawn from a line
(largest number of votes is 20). Center: the same points, offset by a small random
vector (largest number of votes is 6). Right: both coordinates of each data point
are uniform random numbers in the range [0,1]) (largest number of votes is 4).

with large numbers of votes due to noise should break up. But in a finely quan-
tized accumulator array, votes from tokens on the actual line will tend to miss one
another, meaning you may miss lines.

Fitting circles, planes or spheres following this recipe is just a matter of how
one sets up the accumulator array and how one votes (exercises). However,
issues of dimension become a serious problem exercises .

Remember this: The Hough transform identifies a structure by allow-
ing each token to wvote for all possible structures associated with the token,
then choosing the structure with the most votes. This recipe is easily made
concrete for the case of lines; circles, planes, ellipses, spheres and so on
follow, but present difficulties with dimension. Noise creates serious prob-
lems finding the structure with most votes. The general idea — that noisy or
ambiguous predictions can be improved by voting — is extremely influential.

226 Chapter 13 Voting and its Applications

13.3 CLASSIFICATION AND DETECTION BY VOTING

13.3.1

Instance level classification is the problem of determining whether a particular
object is present in an image. If it is there (wherever it appears) the image is
labelled with that object. Instance classification is rather different than category
level categorization, where one must determine whether any instance of a particular
category is present. So, for example, if you have to tell whether your two-year old
tabby cat is in a picture, you are doing instance level classification. If you have to
tell whether there is a cat in the image, you are doing category level categorization.

Instance level classification is important and useful in applications. I will use
the following problem as a running example. Assume you have a large collection of
book cover images (example images), each with associated metadata (say, the name
of the book, the author, the publisher, the edition and the publication date). A user
holds a book cover in front of a camera. Assume the resulting query image is rea-
sonable — there are no fingers obscuring the book cover, it is shown at a reasonable
angle, it is shown in reasonable lighting, it happens to be the same size as in the
example image, and so on. You wish to use the example images to determine what
book appears in the query image or that the book is unknown (to you, anyway!).
Notice that, because this is an instance level classification problem, two different
editions would actually be two different instances if they looked different — so they
might have different cover pictures.

You might attack this problem with the elementary detector of Section 4.3.3,
but results would be poor. The same book covers will look different when viewed
in slightly different lighting (Figure 13.2), so just matching part of an image with
the costs of Section 4.3.1 is unlikely to work well (when the chicken of Section 4.3.3
got darker or changed position, the match became worse).

Voting Using Interest Points

The example images of the book covers are obtained under different circumstances
— camera position, lighting, and so on — than the query images. The interest
point construction of Section 8.2 is a powerful tool for dealing with these problems.
The interest point representations were constructed to be stable under changes
of lighting, scale, and orientation. Further, the interest points must be at least
somewhat distinctive.

You can now exploit the tree construction of Section 7?7 to vote. Voting will
be by passing an interest point down a tree built using the following steps. Give
each different book a unique number. Build a collection of interest points by taking
each known book cover image, and finding its interest points. Build a tree from
the interest point descriptors as in Section ?7. This works because an interest
point descriptor is a vector of fixed length, which is all the tree-building procedure
requires. Build the tree so that each leaf of the tree contains relatively few interest
points (hundreds rather than millions). At each leaf, record the number of the book
that has the most patches in the leaf.

To find the most likely book for a new cover image, find the interest points for
the image and compute their descriptors. Pass each descriptor down the tree and
record a vote for the book in its leaf. Choose the book with the largest number of
votes. If that book has enough votes, decide the query image contains that book; if

Section 13.3 Classification and Detection by Voting 227

M FISH REPRODUCTION AQUARIUM FISH REPRODUCTION i

Studies of Guppies and Other Fish

a4

Diana Walstad

FIGURE 13.2: On the left, an example image of a book cover, with two patches
cropped from the example. On the right, a (cropped) image of the book cover, with
instances of those two patches cropped from the image. Notice how the color has
changed in the book images. This effect is caused (at least!) by glossy reflections
from the plastic coating on the surface of the book in the example image. One patch
has had a significant color change, and likely won’t match at the pizel level; the other
might well match. A SIFT feature representation of the patches would certainly
match. Image credit: Cover of Diana Walstad’s fascinating book on reproduction
in aquarium fish, mostly guppies.

it doesn’t, decide the query image contains an unknown book. This procedure is a
manifestation of the underlying principle of the Hough transform: if many simple
local measurements agree on something, they’re likely right.

The main question here is how you vote. When an interest point arrives at
a leaf, you could record one vote for the book that is most common in that leaf.
Alternatively, you could record a fraction of a vote each for each book present in
the leaf, so if “Decline and Fall” appears once, “Scoop” appears once, and “Put
out more Flags” appears three times, then “Decline and Fall” and “Scoop” each
get 1/5 of a vote, and “Put out more Flags” gets 3/5 of a vote. It is helpful if
the fractions add up to one so that common interest points do not dominate the
voting exercises . Now you may get the identity of a book right even if there
is nothing particularly distinctive on its cover. Less helpfully, many titles will get
small numbers of votes, and there is a bigger prospect of the wrong title getting
too many votes.

As another alternative, an interest point could record a vote only when the
margin in its leaf is large enough — that is, the book that has the most interest
points in the leaf has substantially more votes than the book with the second
largest number. Similarly, you could build multiple trees — each of which yields
somewhat different behaviors, because of the random starts in the k-means step
and the random subsampling in the hierarchical process — and accumulate votes
over trees. These will yield improvements, but most powerful is to modify the tree
construction.

13.3.2

228 Chapter 13 Voting and its Applications

UM FISH REPRODUCTION
wdies of Guppies and Other Fish

Center in interest point coordinate system

Diana Walstad

FIGURE 13.3: Interest points can vote on the location of the center of the book,
because each interest point carries its own coordinate system. On the left, the
cover image, with the center of the cover marked as an empty circle. Center shows
two interest points, with their coordinate systems attached. I have marked the origin
of the coordinate system with another circle, and the orientation with an arrow. On
the right, I show each interest point rotated so that the coordinate systems line up,
and mark the location of the center of the book in each point’s coordinate system.
For the top interest point, the book center is quite far away from the origin, but
for the bottom interest point, it is quite close. Image credit: Cover of Diana
Walstad’s fascinating book on reproduction in aquarium fish, mostly guppies.

Voting on Centers

The elementary classifier above is a classifier because it tells whether a book cover
is present in an image. It can be improved into a detector, because the interest
point construction yields where the book cover is.

If you build the instance detector using interest points, you will find it can
be inaccurate. Part of the difficulty is that the same interest point can appear on
many different book covers. For example, each large letter on a cover is likely to
produce some interest points — in the worst case, an interest point on a query image
might match every book with a "T” on its cover, which isn’t helpful. The current
voting scheme looks only at what interest points are on the cover, but does not
account for where they are. It is quite straightforward to do so by further voting,
and the result is an elementary detector — the system can tell what book cover is
present and where it is.

Assume that each example image is cropped to the cover of the book, and
contains nothing else, so the center of the cover is easy to find in the example im-
ages. When you construct an interest point, you construct a local image coordinate
system (origin at corner, Section 8.2.1; scale from Section 8.2.2; and orientation
from Section 8.2.3). For each interest point in the example image, you can record
the location of the books center in this interest point’s coordinate system, and insert
this information in the tree with the interest point.

Now think about a query image of the book cover. Find an interest point in

Section 13.3 Classification and Detection by Voting 229

(s
'\

FIGURE 13.4: Matching to a book cover is conceptually straightforward. Find each
interest point in the scene. Pass each down the tree to find what covers it might
match and where it places the center of the book in the scene image. If enough
interest points agree as to a center location, allow them to wvote on their titles.
Here, three interest points have been detected; two agree on the location and title,
and the third is ignored because nothing agrees with it. Image credit: Cover of Diana
Walstad’s fascinating book on reproduction in aquarium fish, mostly guppies.

that query image, and match it using the tree. You can recover a predicted location
of the center of the book from that interest point. It is just the location recorded
in the tree, but now in the coordinate system of the interest point in the query
image. Different interest points in the query image that agree on the name of the
book should also agree on the location of the center of the book.

This observation increases the scope of voting considerably. A simple and very
effective strategy is to censor votes. Collect all votes for a particular book. For each
predicted center, check that there is another prediction (or two other predictions,
and so on) of the center nearby. If there is, record a vote for that book. If there is
not, the interest point does not vote. Finally, take the book with the largest number
of votes. Notice that this reduces the chance that you misidentify the book, but
might increase the chance that you label the book as “unknown”.

Alternatively, you could think about voting in terms of an accumulator array
(the practical obstacles to actually doing this should be obvious and should deter
you). In principle, you could have a 3D accumulator array. Two dimensions are
spatial, and the third is the identity of the book. You would pass every interest
point detected in the image through the tree and vote for the book and location
associated with it. You would then analyze the accumulator array — this is like the
voting procedure above; the votes are censored because votes for the wrong location
of the center won’t find one another in the accumulator array. You should think

13.3.3

230 Chapter 13 Voting and its Applications

ISH REPRODUCTION

e Studies of Guppies and Other Fish

a4

@

Diana Walstad 4 R e p @

Bounding box in interest point coordinate system

FIGURE 13.5: Interest points can vote on center location, orientation and scale of
the book cover. This information yields the outline of the book, so you can think of
interest points each carrying a vote as to the book cover outline. On the left, the
cover image, with the outline marked in heavy lines. Center shows two interest
points, with their coordinate systems attached. On the right, I show each interest
point rotated so that the coordinate systems line up. I have marked the outline of
the cover, in the interest point’s coordinate system with heavy lines. Image credit:
Cover of Diana Walstad’s fascinating book on reproduction in aquarium fish, mostly

guppies.

of this accumulator array as very complicated feature that describes the image.
Rather than trying to build this, you should think of it as an example of the kind
of image features that could be constructed. Chapter 22.6 offers much more efficient
constructions of comparable features.

Recovering Location, Scale and Orientation

Matching an interest point tells you more than just where the center of the book
might be. Take an interest point in an example image of a book cover. You could
record the orientation and the bounding box of the book cover in the interest point’s
coordinate system — a total of five parameters, and use that. You could not use the
accumulator (too many buckets, exercises), but you could use this information
to censor votes. Alternatively, ignore the bounding box until you have determined
what book is present. Now use the interest points that were allowed to vote for that
book to determine the bounding box of the book present in the image. As another
alternative, you could record the rotation, scale and aspect ratio of the book cover
as well as the location of the center of the book (this is equivalent to the bounding
box, exercises). Quite a useful detector can be built like this exercises .

Section 13.4 Modifying the Tree 231

Remember this: Deciding whether an image contains an instance of
an object is instance classification; instance detection is reporting where
that instance is in the image. Voting on interest points can be used for both
instance classification and instance detection. You can determine whether:
interest points agree on what is in the image; interest points agree on where
its center is; interest points agree on what its orientation is; and interest
points agree on the scale of the object. There are a variety of voting proce-
dures. It can be particularly useful to censor votes.

13.4 MODIFYING THE TREE

A tree constructed using hierachical k-means may not be particularly good for these
classification and detection tasks. The hierarchical k-means construction tends to
split the data up so that leaves contain interest points that are similar to one
another. But interest point descriptors are constructed so they do not change
much between different images of the same thing. This means that small changes
in descriptor that result in a change of label are important and reliable. You could
expect to build a more useful tree using the labels. Such trees are typically called
decision trees.

To illustrate the difference, think about a collection of books that all have a
large face on the cover. Each will have an interest point at the inside and outside
corner of each eye (say). These interest points will mostly look quite similar to
one another, and might all end up in the same leaf using a hierarchical k-means
tree. But some differences are more important than others. For example, eyelashes
might have quite a small effect on the description of the interest point, and so
interest points at eyes with small lashes may appear in the same leaf as interest
points at eyes with large lashes. Ideally, the tree is constructed to exploit this small
difference in appearance, because it has a big effect on identity. Ensuring that eyes
with small eyelashes appear in different leaves than eyes with large eyelashes should
help improve the accuracy of the tree.

You can see how to build a different tree by thinking about how to walk a
point down a tree. Go to the root and apply the following recursive procedure: if
the node the point is at is a leaf, stop and report the leaf; otherwise, decide which
child the point lies in, then recur. For the tree built with hierarchical k-means, each
child has a center associated with it, and the point lies in the child whose center is
closest. Building a different kind of tree is just a matter of changing the procedure
to choose the child that a point should lie in.

You want a tree where most of the data items in each leaf have the same
label, and where there are not too many leaves. If there are many different labels
in each leaf, the voting may be indecisive. If there are too many leaves, a new
interest point may not arrive at the right leaf — a failure of generalization, a topic
discussed in greater detail in Chapter 21. It is far too much trouble to build an
optimal tree. Instead, a powerful approach for building a tree incorporates a great

1341

232 Chapter 13 Voting and its Applications

3 1
1 2 ,
y>.32 1 ! 5 ,
1 2 1
x>-0.58 x>1.06
Or) . 3
2
1 2 1 3 3 3
2 3 3
3
2 3
2
-5 . ‘
-5 0 5

FIGURE 13.6: The tree of Figure 10.9 divides feature space by choosing which of a set
of centers is closest to a query point. This figure shows a straightforward decision
tree, illustrated in two ways. The test is now a test of one of the dimensions against
a threshold. The data points belong to three classes. On the left, I have given the
rules at each split, and labelled each leaf with the most common class in the leaf.
On the right, I have shown the data points in two dimensions, and the structure
that the tree produces in the feature space.

deal of randomness. As a result, you get a different tree each time you train a tree
on a dataset. None of the individual trees will be particularly good (they are often
referred to as “weak learners”). The natural thing to do is to produce many such
trees (a decision forest), and allow each to vote; the class that gets the most votes,
wins. This strategy is extremely effective.

Building a Decision Tree

There are many algorithms for building decision trees. I will describe an approach
chosen for simplicity and effectiveness; be aware there are others. I will always use
a binary tree, because it is easier to describe and because it is usual (it doesn’t
change anything important, though). In the binary case, each node that isn’t a leaf
has a decision function, which takes data items and returns either 1 or -1 (for left
child or right child).

Now think about the tree’s effect on the training data. Pass the whole pool
of training data into the root. Any node splits its incoming data into two pools,
left (all the data that the decision function labels 1) and right (ditto, -1). Finally,
each leaf contains a pool of data, which it can’t split because it is a leaf.

Building the tree uses a straightforward algorithm. First, choose a class of
decision functions to use at each node. A very effective algorithm is to choose
a single feature at random, then test whether its value is larger than, or smaller
than a threshold (by a gross extension of metaphor, this is sometimes known as a
decision stump). For this approach to work, one needs to be quite careful about
the choice of threshold (next section). Surprisingly, being clever about the choice

13.4.2

Section 13.4 Modifying the Tree 233

o
<] [o Ed
° | R ° ®oox
o ° —_ L - — —_— —_— — — — -
o ° | o
- P ° xoo®
w =
>< =

Informative split

Less informative split

FIGURE 13.7: Two possible splits of a pool of training data. Positive data is repre-
sented with an ‘x’, negative data with a ‘o’. Notice that if we split this pool with
the informative line, all the points on the left are ‘o’s, and all the points on the
right are ‘x’s. This is an excellent choice of split — once we have arrived in a leaf,
everything has the same label. Compare this with the less informative split. We
started with a node that was half ‘z’ and half ‘0’, and now have two nodes each of
which is half ‘x’ and half ‘0’ — this isn’t an improvement, because we do not know
more about the label as a result of the split.

of feature doesn’t seem add a great deal of value. I won’t spend more time on other
kinds of decision function, though there are lots.

Constructing the tree is a matter of starting with the whole dataset at the root,
then recursively either splitting the dataset at a node or stopping and returning.
If the node is split, the dataset arriving at the node is split too, with points in the
left side going left and those in the right going right. The main questions are how
to choose a split (next section), and when to stop splitting.

Stopping is relatively straightforward, and simple strategies for stopping work.
It is hard to choose a decision function with very little data, so splitting must stop
when there is too little data at a node. If all the data at a node belongs to a single
class, there is no point in splitting. Finally, constructing a tree that is too deep
tends to result in generalization problems, so stop anyhow at a fixed depth D of
splits.

Here is a strategy for choosing a split. For some number of attempts, choose
a single feature uniformly and at random. Set up a range of threshold values for
that feature. Each represents a possible decision function (i.e. test the chosen
feature against the chosen threshold). Now compute some measure of goodness for
each of the decision functions, and keep the best. Experience shows this strategy
is effective, with an appropriate measure of goodness.

Choosing a Split

Figure 13.7 shows two possible splits of a pool of training data. There are two
classes (“positives” or 1 and “negatives” or -1). One split is quite obviously a lot

234 Chapter 13 Voting and its Applications

"

Informative split Less informative split

FIGURE 13.8: Two possible splits of a pool of training data. Positive data is repre-
sented with an ‘x’, negative data with a ‘o’. Notice that if you split this pool with
the informative line, all the points on the left are ‘x’s, and two-thirds of the points
on the right are ‘o’s. This means that knowing which side of the split a point lies
would give you a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are ‘c’s and about half on the right are ‘x’s
— knowing which side of the split a point lies is much less useful in deciding what
the label is.

better than the other. In the good case, the split separates the pool into positives
and negatives. In the bad case, each side of the split has the same number of
positives and negatives. Assume you know which child a data point lies in. The
good case is good because you then require no more information to tell what its
label is. The bad case is bad because you do require quite a lot more information
to predict the point’s label.

Figure 13.8 shows a more subtle case to illustrate this. The splits in this
figure are obtained by testing the horizontal feature against a threshold. In one
case, the left and the right pools contain about the same fraction of positive (‘x’)
and negative (‘0’) examples. In the other, the left pool is all positive, and the right
pool is mostly negative. This is the better choice of threshold. If you were to label
any item on the left side positive and any item on the right side negative, the error
rate would be fairly small. If you count, the best error rate for the informative
split is 20% on the training data, and for the uninformative split it is 40% on the
training data.

All this suggests a procedure to score how good the split is. In the unin-
formative case, knowing that a data item is on the left (or the right) does not
tell you much more about the data than you already knew. This is because
p(1|left pool, uninformative) = 2/3 = 3/5 = p(1|parent pool) and p(1|right pool, uninformative) =
1/2 ~ 3/5 = p(1|parent pool). For the informative pool, knowing a data item is on
the left classifies it completely, and knowing that it is on the right allows us to clas-
sify it an error rate of 1/3. The informative split means that your uncertainty about
what class the data item belongs to is significantly reduced if you know whether
it goes left or right. To choose a good threshold, you need to keep track of how
informative the split is.

13.4.3

Section 13.4 Modifying the Tree 235

Information Gain

Write P for the set of all data at the node. Write P; for the left pool, and P, for
the right pool. The entropy of a pool C scores how many bits would be required to
represent the class of an item in that pool, on average. Write n(i;C) for the number
of items of class 7 in the pool, and N(C) for the number of items in the pool. Then
the entropy H(C) of the pool C is

n(i; C) n(i;C)
_zi: N©) % N(C

(where you should interpret 0log, 0 = 0). It is straightforward that H(P) bits are
required to classify an item in the parent pool P. For an item in the left pool,
H(P,;) bits are needed; for an item in the right pool, H(P,) bits are needed. If the
parent pool is split, you will encounter items in the left pool with probability

N(Py)
N(P)

and items in the right pool with probability

=

(P)
N(P)

H(P) +

bits to classify data items if the parent pool is split. A good split is one that results
in left and right pools that are informative. In turn, you should need fewer bits to
classify once you have split than before the split. You can see the difference

N(Py)
N(P)

H(P)+

(PP P) = H(P) - (

as the information gain caused by the split. This is the average number of bits that
you don’t have to supply if you know which side of the split an example lies. Better
splits have larger information gain. All this yields a relatively straightforward
blueprint for an algorithm, which I have put in a box. It’s a blueprint, because
there are a variety of ways in which it can be revised and changed.

236 Chapter 13 Voting and its Applications

Procedure: 13.2 Building a decision tree: overall

We have a dataset containing N pairs (x;,y;). Each z; is a d-
dimensional feature vector, and each y; is a label. Call this dataset
a pool. Now recursively apply the following procedure:

e If the pool is too small, or if all items in the pool have the same
label, or if the depth of the recursion has reached a limit, stop.

e Otherwise, search the features for a good split that divides the
pool into two, then apply this procedure to each child.

We search for a good split by the following procedure:

e Choose a subset of the feature components at random. Typically,
one uses a subset whose size is about the square root of the feature
dimension.

e For each component of this subset, search for a good split using
the procedure of box 13.3.

Procedure: 13.3 Splitting a feature

We search for a good split on a given ordinal feature by the following
procedure:

e Select a set of possible values for the threshold.

e For each value split the dataset (every data item with a value of
the component below the threshold goes left, others go right), and
compue the information gain for the split.

Keep the threshold that has the largest information gain.

A good set of possible values for the threshold will contain values that
separate the data “reasonably”. If the pool of data is small, you can
project the data onto the feature component (i.e. look at the values of
that component alone), then choose the N — 1 distinct values that lie
between two data points. If it is big, you can randomly select a subset
of the data, then project that subset on the feature component and
choose from the values between data points.

13.4.4 Building and Evaluating a Decision Forest

A single decision tree can yield poor classifications. One reason is because the
tree is not chosen to give the best classification of its training data. We used a
random selection of splitting variables at each node, so the tree can’t be the “best

Section 13.4 Modifying the Tree 237

possible”. Obtaining the best possible tree presents significant technical difficulties.
It turns out that the tree that gives the best possible results on the training data
can perform rather poorly on test data. The training data is a small subset of
possible examples, and so must differ from the test data. The best possible tree on
the training data might have a large number of small leaves, built using carefully
chosen splits. But the choices that are best for training data might not be best for
test data.

Rather than build the best possible tree, we have built a tree efficiently, but
with number of random choices. If we were to rebuild the tree, we would obtain
a different result. This suggests the following extremely effective strategy: build
many trees, and classify by merging their results.

There are two important strategies for building and evaluating decision forests.
I am not aware of evidence strongly favoring one over the other, but different
software packages use different strategies, and you should be aware of the options.
In one strategy, we separate labelled data into a training and a test set. We then
build multiple decision trees, training each using the whole training set. Finally, we
evaluate the forest on the test set. In this approach, the forest has not seen some
fraction of the available labelled data, because we used it to test. However, each
tree has seen every training data item.

Procedure: 13.4 Building a decision forest

We have a dataset containing N pairs (x;,y;). FEach x; is a d-
dimensional feature vector, and each y; is a label. Separate the dataset
into a test set and a training set. Train multiple distinct decision trees
on the training set, recalling that the use of a random set of components
to find a good split means you will obtain a distinct tree each time.

In the other strategy, sometimes called bagging, each time we train a tree we
randomly subsample the labelled data with replacement, to yield a training set the
same size as the original set of labelled data. Notice that there will be duplicates
in this training set, which is like a bootstrap replicate. This training set is often
called a bag. We keep a record of the examples that do not appear in the bag (the
“out of bag” examples). Now to evaluate the forest, we evaluate each tree on its
out of bag examples, and average these error terms. In this approach, the entire
forest has seen all labelled data, and we also get an estimate of error, but no tree
has seen all the training data.

Procedure: 13.5 Building a decision forest using bagging

We have a dataset containing N pairs (x;,y;). FEach x; is a d-
dimensional feature vector, and each y; is a label. Now build k& boot-
strap replicates of the training data set. Train one decision tree on each
replicate.

13.4.5

238 Chapter 13 Voting and its Applications

Classifying Data Items with a Decision Forest

Once we have a forest, we must classify test data items. There are two major
strategies. The simplest is to classify the item with each tree in the forest, then
take the class with the most votes. This is effective, but discounts some evidence
that might be important. For example, imagine one of the trees in the forest has a
leaf with many data items with the same class label; another tree has a leaf with
exactly one data item in it. One might not want each leaf to have the same vote.

Procedure: 13.6 Classification with a decision forest

Given a test example x, pass it down each tree of the forest. Now choose
one of the following strategies.

e Each time the example arrives at a leaf, record one vote for the
label that occurs most often at the leaf. Now choose the label
with the most votes.

e Each time the example arrives at a leaf, record N; votes for each of
the labels that occur at the leaf, where N; is the number of times
the label appears in the training data at the leaf. Now choose the
label with the most votes.

An alternative strategy that takes this observation into account is to pass the
test data item down each tree. When it arrives at a leaf, we record one vote for each
of the training data items in that leaf. The vote goes to the class of the training
data item. Finally, we take the class with the most votes. This approach allows
big, accurate leaves to dominate the voting process. Both strategies are in use, and
I am not aware of compelling evidence that one is always better than the other.
This may be because the randomness in the training process makes big, accurate
leaves uncommon in practice.

Section 13.4 Modifying the Tree

239

Resources: Simple classification with decision forests
e Simple image classification datasets:

— MNIST is a dataset of 60,000 training and 10, 000 test examples
of isolated handwritten digits, originally as binary images. You
can find it in a number of places (search!); one is https://www.
kaggle.com/datasets/hojjatk/mnist-dataset. It was origi-
nally constructed and popularized by Yann Le Cun, and has had
fantastic influence. It is now mostly used for checking methods
(if something won’t work on MNIST, it probably won’t work at
all).

— Fashion-MNIST is a dataset of 60, 000 28x28 grayscale images
in 10 classes, with 6000 images per class. There are 50,000 train-
ing and 10, 000 test images. The images depict fashion items,
and the dataset is intended to replace MNIST as resource for
checking methods. It was created by *****

— CIFAR-10 is a dataset of 60, 000 32x32 color images in 10
classes, with 6000 images per class. There are 50, 000 training
images and 10, 000 test images. The dataset was created by
Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Find it at
https://www.cs.toronto.edu/~kriz/cifar.html.

— CIFAR-100 is a dataset of 60, 000 32x32 color images in 100
classes, with 600 images per class. There are 50, 000 training
images and 10, 000 test images. The dataset was created by
Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Find it at
https://www.cs.toronto.edu/~kriz/cifar.html.

— Food-101 is a dataset of *** color images of food items in 101
classes, with *** images per class. The dataset was created
by Lukas Bossard, Matthieu Guillaumin and Luc Van Gool.
Find it at https://www.kaggle.com/datasets/dansbecker/
food-101.

e Building decision forests:

— OpenCV supports decision trees and decision forests, but
I haven’t found a tutorial. There is a very good worked
example, linked to the book “Machine Learning for OpenCV”
by Michael Beyeler at https://github.com/mbeyeler/
opencv-machine-learning/blob/master/notebooks/10.
03-Using-Random-Forests-for-Face-Recognition.ipynb.

— Scikit-learn will build decision forests for you; see
https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html for the
function and examples at https://scikit-learn.org/
stable/modules/ensemble.html#forest.

— XGboost is a large and very efficient library for building de-
cision forests trained using a procedure I have not described
(gradient boosting). However, XGboost will train a decision for-
est (largely) as described in the text, see https://xgboost.
readthedocs.io/en/stable/tutorials/rf.html. XGboost
has a well-deserved reputation for speed and efficiency.

240

Chapter 13 Voting and its Applications

Remember this: A decision tree is built using labels as well as features.
Splitting nodes by testing a feature against a threshold yields effective deci-
sion trees. The feature and threshold are chosen by a small search over a
set of randomly chosen features. Choosing a split using information gain is
effective. Each time you build a tree like this, you will get a different tree.
Individual trees tend mot to be great classifiers, but voting across a forest
can produce a very good classifier. All the voting procedures described for a
tree built using hierachical k-means apply to a decision forest, with minimal
changes

Section 13.5 You should 241

13.5 YOU SHOULD
13.5.1 remember these definitions:

13.5.2 remember these facts:

Do not represent lines or planes like this 222
Represent lines and planes like this 222
Representing lines by triples involves an ambiguity 223
A formula for perpendicular distance from point to line 223
The normal of aline. 223
Representing a line by angle and distance can be convenient. 223
Hough transform summary. 225
Voting on interest points can be used for both instance classification

and instance detection. L oL 231
All the voting procedures described apply to a decision tree built

using labels and features. 240

13.5.3 remember these procedures:

Hough transform: Master recipe 224
Building a decision tree: overall oo 236
Splitting a feature oL oo 236
Building a decision forest L. 237
Building a decision forest using bagging 237
Classification with a decision forest 238

13.5.4 use these resources:

Resources for decision forests oL L. 240
13.5.5 be able to:
e Apply a Hough transform to find lines.
e Apply a simple voting method for instance classification and detection.

e Explain why voting is helpful and why censoring votes can be useful.

242 Chapter 13 Voting and its Applications

EXERCISES

QUICK CHECKS

13.1.
13.2.
13.3.
13.4.

13.5.

13.6.
13.7.
13.8.

13.9.

What is the normal of a plane represented by (a,d)?

Why does the family of lines given by (u,v, 1) omit any line through the origin?
What lines are missing from the family of lines given by (1,v,w)?

You are given a line (a, b, c¢). Show there is exactly one (6,7) in 0 < r < 0 and
0 < 0 < 7 so that the line can be represented as (cos,sin,r).

You are given a line (a,b,c). Show there are exactly two (0,7) in 0 < r < 0
and 0 < 0 < 27 so that the line can be represented as (cos6,sin 6, r). Interpret
these two solutions.

Imagine you wish to fit circles of fixed, known radius with a hough transform.
What is the dimension of the accumulator array?

Imagine you wish to fit ellipses with a hough transform. What is the dimension
of the accumulator array?

Imagine you wish to fit spheres with a hough transform. What is the dimension
of the accumulator array?

You wish to fit curves with a hough transform. The accumulator array is d
dimensional. You want to have n bins along each axis. How many bins are
there in total? What problems might occur if d is big?

13.10. Section 13.3.1 has: “It is helpful if the fractions add up to one so that common

interest points do not dominate the voting.” Explain.

13.11. Section 13.3.1 suggests you could censor votes using the orientation and the

bounding box of the book cover in the interest point’s coordinate system. How
would this work?

13.12. Compute the entropy for a pool of data with eight classes and the same

number of data items in each class.

13.13. Compute the entropy for a pool of data with eight classes, where all the data

is in one class.

13.14. What is the information gain for each of the splits of Figure 13.77

LONGER PROBLEMS
13.15. Section 13.4.3 says: “This means that, on average, you must supply

N(Py)
N(P)

N(Pr)
N(P)

H(Pp) +

H(Py)

bits to classify data items if the parent pool is split.” Prove this.

PROGRAMMING EXERCISES

13.16. Build various simple image classifiers using interest points and the ideas of

Section ?? and Section 13.4. Use the Food-101 dataset (because the images are

reasonably sized — interest points for a 28x28 image aren’t that helpful). Use

80% of the data for each class to build the forest, and evaluate the classification

using the remaining 20% of the data. To evaluate, use the error rate — the

fraction of classification attempts that are wrong (lower is better!).

(a) Build a single decision tree using interest points and hierarchical k-means
to build the tree. How well can you get this to work? Is your procedure
better than simply labelling the test data at random?

Section 13.5 You should 243

(b) Replace your decision tree with one built using the procedures of Sec-
tion 13.4. Did the error rate improve?

(¢) Replace your decision tree with a decision forest built using a package (I
recommend using XGboost if you can). How well can you get it to work?

