CHAPTER 14
Fitting Lines

An alternate master recipe to choose the “best” parametric model to explain
or represent some data is to set up an optimization problem describing the “best”
model, then search for a solution. In this chapter, I will concentrate on various
applications of this approach to choosing a line to represent some tokens. These
tokens could be edge points, or they could be the location of some interest points,
or they could be other things entirely, but they are represented by their location.

Another very important case, dealt with in detail in Chapter ??, might look
different to you but isn’t really. You are given a set of points x; in one image and
a set of points y; in another, and must find a transformation 7 so that 7 (x;) is
close to y;. Each of these problems is usually referred to as fitting.

14.1 FITTING JUST ONE LINE

14.1.1

Fitting just one line to a set of tokens is a good model problem. Assume that all
the points that belong to a particular line are known, and the parameters of the
line must be found.

Least Squares Fitting

There is a simple strategy for fitting lines, known as least squares. Do not use
this - I am showing it only because it is traditional, and because the form of the
derivation is repeated for other problems. This procedure has a long tradition and
a substantial bias. You have likely seen this idea, but may not know why you
should not use it. Represent a line as y = ax + b. There are N tokens, and the ¢’th
token is at x; = (%14, 22,). Now choose the line that best predicts the measured y
coordinate for each measured = coordinate, and so minimizes

(1/2) Z(ﬂﬁz,i —axy,; — b)”.

%

The term (1/2) very often appears in quadratic problems like this to absorb the 2
that appears when you differentiate. A certain looseness in notation is traditional
(you might not see either), because the 2 appears in front of an expression that is
equal to zero. Adopting the notation

DU
N

u =

the line is given by the solution to the problem

(Z)-(Z27)(5)
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If the errors are weighted with weight w; corresponding to the i’th term, the cost
becomes
(1/2) Zwi(xgﬂ' — aT1,5 — b)Q
i

and, if you interpret
D Wil
2w

u =

the expression above still works.

Although this is a standard linear solution to a classical problem, it’s not
much help in vision applications, because the model is an extremely poor one. The
difficulty is that the measurement error is dependent on coordinate frame. Vertical
offsets from the line count as errors, which means that near vertical lines lead to
quite large values of the error and quite funny fits (Figure 14.1). In fact, the process
is so dependent on coordinate frame that it doesn’t represent truly vertical lines at
all.

i i

0>

Least squares error

FIGURE 14.1: Least squares finds the line that minimizes the sum of squared vertical
distances between the line and the tokens (because it assumes that the error appears
only in the y coordinate). This yields a (very slightly) simpler mathematical prob-
lem at the cost of a poor fit. Importantly, if the coordinate system rotates (say,
the camera is rotated), the error between the rotated points and the rotated lines
changes.

Total Least Squares Fitting

Working with the actual distance between the token and the line (rather than
the vertical distance) leads to a problem known as total least squares. Write a =
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Total least squares

FIGURE 14.2: Total least-squares finds the line that minimizes the sum of squared
perpendicular distances between tokens and the line so near-vertical lines can be
fitted without difficulty. If the coordinate system rotates (say, the camera is rotated),
the error between the rotated points and the rotated lines does not change.

(a1,a2)T and represent a line as the collection of points where a’x+c = 0. Require
that a”a+ c? # 0, otherwise the equation is true for all points on the plane. Every
line can be represented in this way.

Recall that for s # 0, the line given by s(a, c) is the same as the line repre-
sented by (a,c). Recall that the perpendicular distance from a point x to a line
(a, c) is given by

abs(a’x + ¢) if ala=1.
It is convenient to assume that each point has an associated weight w;. In the case
where you have no idea what the weights are, use w; = 1/N. Notice that choosing
w; = 1/N ensures that the fitting cost you compute does not depend on the number
of points exercises . Recall
2 Wil

Do Wi

Minimizing the sum of perpendicular distances between points and lines re-
quires minimizing

u =

(1/2) Z wi(a’x; + ¢)?,
i
subject to a’a = 1. Introduce a Lagrange multiplier \; at a solution
;% T1Ty T1 a1 2a1

TiTs T2 T3 az | =X 2a2
T Tz 1 c 0
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This means that
C= —a1T] — A27T3.

Substitute this back to get the eigenvalue problem

337%—33713371 T1Ty — T1 T2 <Cl1> (a1>
. T3 =M :
T1Tg —T1 T2 X5 — T2 T2 a2 a2
Because this is a 2D eigenvalue problem, two solutions up to scale can be obtained
in closed form (for those who care, it’s usually done numerically!). The scale is
obtained from the constraint that a”’a = 1. The two solutions to this problem are

lines at right angles; one maximizes the sum of squared distances and the other
minimizes it (which is which is explored in exercises exercises ).

Procedure: 14.1 Fitting a Line using Weighted Total Least Squares

Given N points x; = (x;1,%;2), and weights w; associated with each
point, find a line that minimizes the weighted total least squares error

by forming
_ D Wiy
T = S
1 1
__ Ziwiml,i
T o= S
i Wi
2 = Zzwlx%z
1 Ziwi
TEs = D W S
> Wi
° > Wi
and

Write e = (e, e2)” for the unit eigenvector of M corresponding to the
smallest eigenvalue. The line is

e1T + exy — e1xy; — egz = 0

14.1.3 Application: Surface Normals in Point Clouds

A point cloud is a set of points with no other structure. The idea is developed
in greater detail in Chapter ?7. Usually, point clouds are obtained by sampling
surfaces in some way — the points lie on objects in scenes, and are close enough
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that most points are on the same object as their closest neighbors. This means
that you could associate a normal with each point fairly accurately by: finding a
few (at least two) nearest neighbors; fitting a plane to the point and its neighbors;
and using the normal of that plane.

You can find the nearest neighbors either by blank search (check the distance
to every other point, and take the points with the smallest; which is slow) or by
using the approximate nearest neighbors method of Section 10.3.1. Fitting a plane
to points in 3D is very similar to fitting a line to points in 2D. You should use total
least squares, just as in line fitting. Represent the plane as a’x + d = 0; then the
squared distance from a point x; = (214,724, 7; 3) to the plane will be (a”x +d)? if
a’a = 1. exercises Now use the analysis above with small changes (the closed
form expression for the three solutions is more complicated). The normal will then

be a normalized to a unit vector.
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Procedure: 14.2 Fitting a Plane using Weighted Total Least Squares

Given N points x; = (21,4, %2,i,%3,), and weights w; associated with
each point, find a plane that minimizes the weighted total least squares
error by forming

_ Do Wit1

x p—
! D Wi
5 = Do Wik
D Wi
= = 2o Wi

Zi wj
1 Zz w;

D Wil1,iT42

1Ty =
' 2o Wi
g 2o Wi
T = Do Wil ;T4 3
PIFRCY
— Zz wix?ﬁ
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> Wi

and

¥2 —F1 T Ti%3 — T Tz TiZ3 — T1 T3
M= | @1 -5 71 23-T2T T@3—7273
T3T1 — T3 T1 T3z — T3 Tz T3 — T3 T3

Write e = (eq, e, e3)” for the unit eigenvector of M corresponding to
the smallest eigenvalue. The plane is

e1T + exy + e3z — e121 — €223 — €323 = 0

Remember this: Fit lines in 2D and planes in 3D with total least
squares if there are no outliers. NEVER EVER use least squares without
a good reason that you can articulate.
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FIGURE 14.3: There can be more than one point on a curve that looks as if it is
closest to a token. This makes fitting curves to points very difficult. On the left,
a curve and a token; dashed lines connect the token to the two points on the curve
that could be closest. The dashed line from token to curve and the tangent to the
curve are at right angles for each of the two points on the curve. Center and right
show copies of part of the curve; for each, the closest point on the segment to the
token is different, because part of the curve is missing. As a result, no local test
can guarantee a point is closest — all candidates must be checked.

Fitting Curved Shapes

Curves in 2D are different from lines in 2D. For every token on the plane, there is
a unique, single point on a line that is closest to it. This is not true for a curve.
Because curves curve, there might be more than one point on the curve that looks
locally as though it is closest to the token (Figure 14.3). This means it can be
very hard to find the smallest distance between a point and a curve. Similar effects
occur for surfaces in 3D. If one ignores this difficulty, fitting curves is similar to
fitting lines: minimize the sum of squared distances between the points and the
curve as a function of the choice of curve. The exercises explore how to find the
closest point on a curve (exercises ), but generally these fitting problems are
very badly behaved.

Remember this: Fitting curved shapes can be difficult because there
may be many candidates for the closest point to the curved shape and be-
cause the distance can be hard to evaluate exactly. There are a number of
approzimate distances, but none is wholly satisfactory. Expect these fitting
problems to be hard.

14.2 FITTING ONE LINE IN THE PRESENCE OF OUTLIERS

Total least squares chooses a line by minimizing the sum of squared error terms.
This is fine when no point is far from the line (Figure 14.4), but a single very
bad data point can give errors that dominate those due to many good data points
(Figure 14.5). This is because the square of a large number is very much larger
than the square of a small number.

Outliers — data points that are far from the model, in this case, the line — are
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FIGURE 14.4: Total least squares behaves well when all points lie fairly close to the
line. Left: A line fitted with total least squares to a set of points that actually lie
on the line. Right: The points have been perturbed by adding a small random term
to both x and y coordinate, but the line fitted to the noisy points (red) is not that
different from the original (green).
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FIGURE 14.5: Total least squares can misbehave when some points are significantly
perturbed. Here the points are those of Figure 14.4, but one point has had its y
coordinate replaced with a constant (new point in red, joined to its original position
with a line). Left: The constant is 1, and the line produced by total least squares has
shifted significantly. Right: The constant is 4, and now the fitted line is completely
wrong. In each case, the original line is in green (and passes close to the points),
and the new line is red.

common. One way to encounter significant outliers is if you are fitting a line to a
set of tokens that together form multiple lines — for example, a set of tokens on the
edges of a square (Figure 14.9) — a line that fits some points (say, those on one side
of the square) will have tokens far away from it (those on the other sides). Another
source of outliers is errors in collecting or transcribing data points. Practical vision
problems usually involve outliers.
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Outliers can be handled by reducing the influence of distant points on the
estimate. This is where the weights of the previous section come in useful. A
natural strategy fits a line using a set of weights, then recomputes the weights using
a large weight for points that are “trustworthy” and a small weight for points that
are “suspicious”. This is the basis of IRLS (iteratively reweighted least squares),
a procedure that uses a robust cost function to organize the reweighting of points.
Alternatively you could identify bad points and ignore them. For example, a small
set of good points will identify the thing we wish to fit; other good points will agree,
and the points that disagree are then bad points. This is the basis of RANSAC, an
extremely important algorithm described in Section 14.3.

Robust Cost Functions

The weights are not known, but can be recovered using a robust loss, which reduces
the cost of large errors. Typically, these cost functions “look like” squared error for
small values, but grow more slowly for distant points.

Write 6 for the parameters of the line and r(x;,0) for a residual, which mea-
sures consistency between the point and the line. In this case, 7(x;,6) will always
be (aTx + ¢), which is signed, so positive on one side of the line and negative on
the other. Rather than minimizing the total least squares criterion, which is

(1/2) ) (r(x:,6))”

%

as a function of 8, choose the line by minimizing an expression of the form
Zp(r(xhe);a))
i

for some appropriately chosen function p with a parameter o. The total least
squares error fits this recipe, using p(u;0) = u?/2. The trick is to make p(u;o)
look like u?/2 for smaller values of u, but ensure that it grows more slowly than
u?/2 for larger values of u.

The Huber loss uses

which is the same as u?/2 for —o < u < o, switches to |u| for larger (or smaller)
o, and has continuous derivative at the switch. The Huber loss is convex (meaning
that there will be a unique minimum for our models) and differentiable, but is not
smooth. The choice of the parameter ¢ (which is known as scale) has an effect on
the estimate. You should interpret this parameter as the distance that a point can
lie from the fitted function while still being seen as an inlier (anything that isn’t
even partially an outlier).
The Pseudo Huber loss uses



14.2.2

Section 14.2 Fitting One Line in the Presence of Qutliers 253

8 —— Quadratic —— Quadratic
Huber Huber

7 —— Geman-McClure 31 — Geman-McClure
—— PseudoHuber —— PseudoHuber
6 —— Walsch-Leclerc 21 — Walsch-Leclerc

rho(u)
PO
d rho(u)/du
Lo e

FIGURE 14.6: Robust losses reduce the effect of large errors. Left: the robust loss
functions of the text, compared to a squared error loss. In each case, the scale vari-
able o is 1. Note how for each of the robust losses, the cost of large errors is reduced
compared to quadratic losses. Right: the derivative for each of these loss functions;
this derivative appears in the weight term in IRLS, and is sometimes referred to as
the influence function of the loss. For losses like Huber and pseudo-Huber loss, large
errors still have an influence (the derivative heads toward a non-zero constant); but
for other losses, large errors can cause a data point to be completely discounted (the
derivative is zero, so the weight in IRLS will be zero).

A little fiddling with Taylor series reveals this is approximately (u/c)? for |u|/c
small, and linear for |u|/o big. This has the advantage of being differentiable.
The Geman-McClure loss uses

2(9)2 B 2u?

g

(8)7 44 Wi

p(u;o) =

which is approximately (1/2)(u/c)? for |u| much smaller than o, and close to
(1/2)0? for |u| much larger than o.
The Welsch loss (or LeClerc loss) uses

plu;o) =1 — e{; (3)1

notice this looks like (1/2)(u/c)? for |u| much smaller than o, and close to 1 for
larger w. All of these losses increases monotonically in |u| (the absolute value is
important here!), so it is always better to reduce the residual.

IRLS: Weighting Down Outliers

The line is chosen by minimizing
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FIGURE 14.7: Robust losses can control the influence of outliers. Blue points lie
on a line, and have been perturbed by noise; red points are outliers. The red line
shows a starting line, obtained by drawing a small random sample from the dataset,
then fitting a line; the gray lines show iterates of IRLS applied to a Huber loss
(later iterates are more opaque; scales are estimated as in the text). The procedure
converges from a range of start points, some quite far from the “true” line. Notice
how each start point results in the same line.

with respect to 6 = (a1, as, c), subject to a3 + a3 = 1. The minimum occurs when

v (Zp(rm,o);o)) = X || vortx0
~ [ w
0
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Here )\ is a Lagrange multiplier and the derivative % is evaluated at r(x;,0), so it
is a function of 8. Now notice that

Z[ap}vﬁﬂz e
i 8u 9T (X, = i T(Xi,e) r{X;, or(X;,
3 o
- r(x;,0)

Now [(1/2)r(x;,6)?] is the squared error used in total least squares. At the true

ap
<T(Xia 9))

minimum 6@, writing
(where the derivatives are evaluated at that é), the expression

Vo [(1/2)r(xi,9)2]

2@1

3wV {(1/2)r(xi,é)2} | 24
i 0

will be true. In turn, if you knew the values the weights took at 6 = é, then you
could find the line with weighted total least squares. If you knew é, you could
estimate the weights. And you should be able to estimate a reasonable value for o
by observing points that are close to and far from the line.

This suggests the natural strategy: start with an estimate of the line, recover
weights from that, then repeat:

e Estimate the line using the weights.
e Estimate o using the new line and the points.
e Re-estimate weights using the new line and the new o.

This procedure is an instance of a general recipe known as iteratively reweighted
least squares. In this procedure, you should think of weights as a discount that
is applied to the squared error — so weights are large for points that are close to
the line, and small for points that are far. More instances of this recipe appear in
Section 77.

I have already dealt with estimating the line using the weights (Section 14.1.2)
and the weights follow from the equation above. The parameter o is often referred
to as scale. In some cases, o can be chosen from application logic. For example,
if you are fitting lines to edges in pictures of buildings and you know that the
pictures are fairly sharp and have little pixel noise, you can expect o to be small.
Alternatively, you can estimate o from data. If the true line was known, then the
values of r(x;,0) would be “small” for inliers and “large” for outliers. Assuming
there aren’t too many outliers, then a fair and widely used estimate of scale at the
n’th iteration is

o™ =1.4826 median; |r(z; 0™V .
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Procedure: 14.3 Fitting a Line using Iteratively Reweighted Least

Squares

This procedure takes a set of N points (z;1,Z2,;) putatively lying on a
line and obtains an estimate of that line.

Starting: Obtain an initial line (a("), 5™, M) with (a(M)2+(b(1))% = 1
and an initial scale ('), One strategy to obtain an initial line is to draw
a small set of points uniformly at random from the data, and apply total
least squares. The scale may need to come from application consider-
ations. Choose a robust cost function p(u;o) from Section 14.2.1 or
somewhere else. Form an initial estimate of weights using

P = Wy 4 bWy, 4D
W _ (dp (@)
w; = <du> / (7"z )

where the derivative is evaluated at u = TZ@ and o). Now use iterate
three steps:

Estimate the line using weighted total least squares (Pro-

cedure 14.1) to obtain (a(™*D), p+1) (n+1)) and "
(n)

Estimate the scale, possibly using

from w

o™ = 1.4826 median; \r§n+1)| .

Alternatively, use a fixed scale obtained using application
considerations.

Re-estimate weights using

w0 = () /(")

where the derivative is evaluated at u = TZ("H) and (1),

Terminate iterations when either the change in the line is below a
threshold or there have been too many.

Problems with Robust Losses

Each of these robust losses has a long record of being useful and helpful, but none
is ideal. One important difficulty with IRLS one must start somewhere, and a bad
start will result in a bad line. This can be controlled by using a number of randomly
chosen lines to start — perhaps obtained by selecting some points at random, and
fitting a line to them — then choosing the best line that results. As Figure 14.8
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Few outliers

Many outliers

FIGURE 14.8: Robust losses can fail, particularly when distant points still have some
weight or if there are many outliers. Top left: a bad start point leads to a bad
line; top right: on the same data set, quite a good start point still converges to
a bad line. Here there are few outliers, but they are far from the data and they
contribute a significant weight to the loss. When there are many outliers, this effect
worsens. Because each outlier still contributes a signficant weight to the loss, even
a good start fails (bottom left). A poor start (bottom right) also fails, and
produces the same line as the good start — in fact, most starts end up close to this
line. Again, blue points lie on a line, and have been perturbed by noise; red points
are outliers; the red line shows a starting line, obtained by drawing a small random
sample from the dataset, then fitting a line; the gray lines show iterates of IRLS
(later iterates are more opaque).

indicates, this isn’t always a reliable approach. If the loss places some weight on
distant points and the outliers are far away or there are many of them, then the
iteration can settle on a bad line even if the initial line is good. The alternative —
using a loss that wholly deemphasizes distant points, like the Welsch loss — means
you may need to use an awful lot of start points. Robust losses are at their best
when there are many data points and few outliers, and you have a reliable way of
starting the fitting procedure.
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Remember this: IRLS fits lines or planes to points by iteratively es-
timating weights, estimating a scale, then computing a weighted total least
squares fit. The weights come from a robust loss function. Robust loss func-
tions look like squared error for small errors, and grow more slowly than
the squared error for large errors. IRLS will usually encounter multiple
local minima, and will usually need to be started with multiple random start
points to find a good fit.

143 RANSAC: SEARCHING FOR GOOD POINTS

An extremely powerful fitting algorithm, formalized by ?, is based on two key ideas
are: a fit on which many of the data points agree is likely right; and you can get
this fit by randomly sampling data. The algorithm is usually called RANSAC, for
RANdom SAmple Consensus.

RANSAC emerges naturally from an example. Imagine you must fit a line
to a dataset that consists of about 50% outliers. Any pair of points yields a line.
Repeat the following procedure: draw a pair of points uniformly and at random;
pass a line through this pair; and use that line as a start point for (say) IRLS. About
a quarter of these randomly drawn pairs will consist of two inliers (not outliers),
and so should yield quite good estimates of the true line when passed to IRLS as
a start point. Furthermore, you can tell when you have a reliable estimate of the
true line — it should have many inliers.

You can tell how often you should draw pairs of points to have a high proba-
bility of seeing at least one reliable estimate of the true line. If the dataset is large,
then a draw of k pairs will have a probability of 0.75* of containing only bad pairs,
so you can compute a k big enough to guarantee that you see at least one good
pair with probability 1 — €.
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Procedure: 14.4 Fitting a Line Using RANSAC

This procedure takes a set of N points (21 ;,Z2,;) putatively lying on a
line and obtains an estimate of that line.

Start by choosing: the number of iterations required, k; the threshold
used to identify a point that fits well, ¢; the number of nearby points
required to assert a model fits well, d. Set up a collection of good fits,
currently empty. Set d = 3 and the best current line to NULL.
Iterate until £ iterations have occurred:

Draw a sample of two distinct points from the data uni-
formly and at random, and determine the line through those
two points.

For each data point outside the sample, if the distance from
the point to the structure is less than ¢, the point is close.

If there are d or more points close to the line then there is
a good fit. Refit the line using all these points and a robust
loss. If the best current line is NULL, or the fitting error
is better than the best fitting error, set d to the number of
inliers, the best current line to the fitted line, and the best
fitting error to the fitting error.

Report the best current line.

Warning: Note that in the version of RANSAC in the box, you must use a
fitting error that is an average over points so that you can sensibly compare fits with
different numbers of inliers. If, for example, you just sum the error over the points,
you will incur a massive bias to fits with a small number of points and produce bad
lines. The version of IRLS I gave averages error, and so is appropriate.

The Parameters for RANSAC

The number of points, n is always the smallest number you need to determine
a fit. For lines, samples consist of pairs of distinct points drawn uniformly and
at random from the dataset. The algorithm applies to much more general fitting,
where sample contains the minimum number of points required to fit whatever you
want to fit. For example, to fit planes in 3D, draw triples of points; to fit circles in
2D, draw triples of points, and so on (I will describe cases where you need to pick
six points in Section 22.6).

The number of draws, k, is set by your desired probability of success and
w, the fraction of inliers in the dataset. Usually, you do not know w, but you need
only a reasonable estimate of this number. The expected value of the number of
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draws k required to get one good sample is given by

E[k] = 1P(one good sample in one draw) +
2P(one good sample in two draws) + ...

= w"+2(1 —w")w" +3(1 —w")2w" + ...

= ’U}_n
(where the last step takes a little manipulation of algebraic series exercises ). To
be fairly confident that of seeing a good sample, you need to draw rather more than
w~"™ samples; a natural thing to do is to add a few — say f — standard deviations
to this number. The standard deviation of k is

V1—wnr

wn

SD(k) =

so you could draw

w (14 fvV1—w")

samples. An alternative approach to this problem is to look at a number of samples
that guarantees a low probability z of seeing only bad samples. In this case

z=(1—w")",

which means that
B log(2)
~ log(1 —wn)’

Estimating the number of inliers: if w is unknown, it can be estimated
from the fitting attempts. If you observe a sequence of A fitting attempts, of which
g appear successful, then you can estimate w = (g /A)l/ ™. You could start with a
relatively low estimate of w, generate a sequence of attempted fits, and then improve
the estimate of w. If you have more fitting attempts than the new estimate of w
predicts, the process can stop. The problem of updating the estimate of w reduces
to estimating the probability that a coin comes up heads or tails given a sequence
of flips exercises .

The closeness threshold, ¢, tells you whether a point is close to the line or
not (test the distance from point to line against this threshold). In general, spec-
ifying this parameter is part of the modeling process. Obtaining a value for this
parameter is relatively simple. You generally need only an order of magnitude esti-
mate, and the same value applies to many different experiments. The parameter is
often determined by trying a few values and seeing what happens; another approach
is to look at a few characteristic datasets, fitting a line by eye, and estimating the
average size of the deviations.

Regimes that are Bad for RANSAC

Either calculation of the number of samples implies you need of the order of w="

samples exercises . This becomes a problem if n is big or w is small (or both).
These are regimes in which RANSAC is quite difficult to use successfully.
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FIGURE 14.9: Incremental RANSAC can successfully fit multiple lines to a noisy
dataset. Points lie on the outline of a square, and have been perturbed by noise.
I applied the strategy of Section 14.3.3 using a RANSAC line fitter. Colors show
inliers and line for each round (in the order blue, green, purple, yellow). On
the left, the final fit to the inlying points is by total least squares. Because some
inliers can be quite far from the line at the corners, the lines tend not to run close
to the data points. On the right, the final fit uses 10 iterations of IRLS, with the
Huber loss. The lines are now very close to the data points.

If there are very few inliers (which isn’t the same as a small fraction of inliers),
the calculations are a poor guide to what will happen, because they assume that
samples drawn are independent of one another. If there are very few inliers then
good samples will tend to be correlated because they are likely to share some inliers.
In this case a more delicate calculation is required to use RANSAC successfully |].

Fitting Many Lines with RANSAC

Here is a natural strategy for fitting k lines to a set of tokens. Start with a working
set of all tokens. For k rounds, find the best line fitting the working set of tokens,
then keep this line and take the tokens that are close to it out of the working set.
It is difficult to make this strategy work using IRLS. Because there are many lines,
there must be many outliers for each line. IRLS can respond quite badly to large
numbers of outliers (Figure 14.8). RANSAC is a natural choice. As Figure 14.9
shows, it is quite important to use a robust loss in the line fit step.
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Remember this: RANSAC finds a good line in a pool of data by a
form of randomized search. One repeatedly draws samples of pairs of points
at random, passes a line through them, finds nearby points, and refits the
line to those nearby points. The right line is one which has the best fitting
error. You can fit circles, spheres, planes and so on with RANSAC if you
can (a) determine how many points to draw and (b) fit the object to the
points. RANSAC is reliable and well behaved outside regimes where there
are very few inliers or where you must draw many points to fit.
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144 YOU SHOULD

14.4.1
14.4.2

1443

14.4.4
14.45

remember these definitions:

remember these facts:

Use total least squares to fit lines and planes . . . . ... ... ... 249
Avoid fitting curved shapes if youcan . . . .. ... ... ... ... 250
IRLS fits lines or planes to points using a robust loss . . . . . . . .. 258

RANSAC is the go-to algorithm for fitting in the face of outliers . . 262

remember these procedures:

Fitting a Line using Weighted Total Least Squares . . . . ... . .. 247
Fitting a Plane using Weighted Total Least Squares . . . .. .. .. 249
Fitting a Line using Iteratively Reweighted Least Squares . . . . . . 256
Fitting a Line Using RANSAC . . . . ... .. ... ... .... 259

use these resources:
be able to:

e Apply a Hough transform to find lines.
e Apply a simple voting method for instance classification and detection.

e Explain why voting is helpful and why censoring votes can be useful.
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EXERCISES

QUICK CHECKS

14.1.
14.2.

14.3.

14.4.

14.5.

14.6.

14.7.

14.8.

Why does the family of lines given by (u, v, 1) omit any line through the origin?
A plane is given by alx+d = 0; show the squared distance from a point
x; = (@1,4, 2,4, T;,3) to the plane is (aTx + d)2 ifaTa=1.

Why is it fairly obvious that there should be local minima for a line fit using
a robust loss?

Section 14.3.1 has:” The problem of updating the estimate of w reduces to
estimating the probability that a coin comes up heads or tails given a sequence
of flips” Explain.

A hyperplane in 4D is a set of points (z1, 2,3, x4) such that axy + bxs +
crs + dzg + e = 0 for some (a,b,c,d,e). You want to use RANSAC to fit a
hyperplane to 4D data. How many points are there in a sample?

Which takes fewer samples: use RANSAC to fit a line to a collection of points
that contains 20% outliers, with a probability of le — 5 that you see a good
sample at least once; or use RANSAC to fit a plane to a collection of points
that contains 20% outliers, with a probability of le — 5 that you see a good
sample at least once? Why?

What will happen if you use RANSAC to fit a line to a dataset that contains
no outliers?

What will happen if you use RANSAC to fit a line to a dataset that contains
only outliers?

LONGER PROBLEMS

14.9.

You wish to minimize

(1/2) > wi(a’x; +¢)?,

subject to ala=1.
(a) Show that, at a solution,

cC= —a1T1 — aTy

;%—Tlﬂ T1T2 — X1 T2 al B al
T3 a Il .
T1T2 — T1 T2 T5 — T2 T2 2 2
(b) Show that, although the condition for a solution above is homogenous in
a1, a2, there are only two possible solutions.
(¢) Show that the two possible values of u can be recovered in closed form.
(d) Show that the two possible solutions are lines at right angles (remember
the eigenvectors of a symmetric matrix are orthogonal).

(e) Show that one possible solution maximizes the sum of squared distances
and the other minimizes it.

and

14.10. A curve on the plane is given in implicit form by f(x) = f(z1,22) = 0.

a oW at, at a pomnt on e curve X, € unit normal to e curve 18 given
Sh that, at int thi thi it 1 to th is gi
by
Vx f(x)

Vaf (%) Vs f(x)
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as long as the denominator is not zero.
(b) Show that, at a point on the curve x = (z1,22)7, the vector

of
s
Oxq

is tangent to the curve (recall a tangent will be at right angles to the
curve).

(¢) Show that if x is the closest point on the curve to some other point p,
then p — x is normal to the curve.

(d) Write x for the closest point on the curve to some other point p. Show
that x must satisfy the two equations

of
f(x) =0 and (p—x)T[ 2 } =0

(e) Check that the curve m% —|—4y2 —4 = 0is an ellipse. Set up these equations
for this curve. Show that there could be as many as four real solutions to
the equations solved by the closest point for this curve. How would you
find the actual closest point?

14.11. Write S = 1+ 2a + 3a” +4a® + .. ..
(a) Show that S —aS=1+a+a%+...

(b) Show that
1

§= 1
1—a2

(¢) Now show that

E[k] = 1P(one good sample in one draw) +
2P (one good sample in two draws) + ...

= w4201 —w")w" +3(1 —w") " +...

-n
= w

14.12. This exercise sets up total least squares for circles in the plane. Write ¢ for
the unknown center of the circle and r for its unknown radius.
(a) A circle is a special curve, in that it is straightforward to find the closest
point on a circle to a given point p. Show how to obtain this point by
joining the center of the circle to p.
(b) Show that the square of the shortest distance from x; to the circle is

(xi - <) ' (xi —¢)
Xi — ¢ +(c —x; T Xi ¢ +(c —x;
) ( )] [ = ( )

(xi —e)T(x; —c i —¢)T(x; —c)

(c) Use the results of the previous exercise to set up the cost function to fit
a circle to a set of points in the plane using total least squares. Don’t
look for a closed form solution; you would need a numerical optimization
procedure to solve this.
(d) How would you set up IRLS in this case?
14.13. A circle in the plane is given by (z1 — a)? + (z2 — b)? — 2 = 0.
(a) What are the radius and center of this circle?
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(b) You can write this circle as 7 + 23 — 2ax; — 2bxg — d = 0. Show that
d>a? +b%

(c) Show that any circle passing through the three points (x1,1, xg’l)T, (21,2, x2’2)T7
(551,3,.T273)T must solve

2r11 2721 1 a 1';1 + xé’l
2w12 2w 1 b | =| xia+z30
2213 2wa3 1 d a3 5+ 733

(d) Use the results of the previous sub exercises to explain how to use RANSAC
to fit circles on the plane.

PROGRAMMING EXERCISES

14.14. This exercise explores fitting lines to points in the plane with total least
squares.

(a) Set up a code to produce a simulated dataset for line fitting by generating
samples of ¢ uniformly and at random in the range [—1, 1]; turning these
samples into points on the line 1 — x2 = 0 by forming (t,t)T; then
generating samples of x = (z1,z2)7 as (t,t)T + £, where £ is a normal
random variable with mean 0 and covariance o2Z.

(b) Set up a code to fit a line with total least squares. Check your code by
ensuring that, when you pass it points on some arbitrary line, it returns
the coefficients of that line.

(c¢) Write 6 for the dot product between (1/v/2)(1, —1)T (which is the normal
of the line in the first sub exercise) and the unit normal of the line your
code produced. Now investigate the relationship between § and o for
N = 10 using simulations. Since § is a random variable, you should plot
the mean and the standard deviation of § (obtained by lots of fitting) as
a function of o.

(d) What happens to § if you fix o at a fairly large value and increase N7

14.15. This exercise explores fitting lines to points in the plane with RANSAC and

IRLS.

(a) Set up a code to produce a simulated dataset for line fitting. Your code
should accept w (fraction of good points), N (number of points), o (scale
of gaussian noise) and b (scale of the outliers). You will need to produce
about wN good points and about (1 — w)N outliers. Do this by, for
each point you simulate, drawing u uniformly and at random in the range
[0,1]. If u > w, produce an outlier, otherwise, produce an inlier. Generate
samples on the line by generating samples of ¢ uniformly and at random in
the range [—1, 1]; turning these samples into points on the line z; —z9 = 0
by forming (¢,¢)7; then generating samples of x = (x1,22)7 as (t,t)T +¢,
where £ is a normal random variable with mean 0 and covariance c“Z.
Generate outliers as points obtained uniformly and at random in [—k, k] X
[—k, k]

(b) Set up a code to fit a line to a set of points using RANSAC and total
least squares. I've always found this sort of code easier to write than to
figure out what an API is up to, but your mileage may vary. Check your
code by ensuring that, when you pass it points on some arbitrary line, it
returns the coefficients of that line.
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(c¢) Write & for the dot product between (1/v/2)(1,—1)T (which is the nor-
mal of the line in the first sub exercise) and the unit normal of the line
your code produced. Now investigate the relationship between 0, o and
w. Since § is a random variable, you should plot the mean and the stan-
dard deviation of § (obtained by lots of fitting) as a function of o. You
might expect that sometimes ¢ is very bad because of an unlucky choice
of outliers, so you should likely use a boxplot for §. How often is § very
bad for reasonable w?

14.16. Use the results of previous exercises to build a code that can fit circles to
points in the plane with total least squares. You should check the behavior of
your code using gaussian noise only.

14.17. Use the results of previous exercises to build a code that can fit circles to
points in the plane with IRLS. You should check the behavior of your code
using gaussian noise and outliers.

14.18. Use the results of previous exercises to build a code that can fit circles to
points in the plane with RANSAC. You should check the behavior of your
code using gaussian noise and outliers.



