
C H A P T E R 6

Applications of Convolution

6.1 FINDING PATTERNS

Recall convolution takes a source image and produces a new image, notation in
Section 5.1.1. You should think of the value of Nij as a dot-product. Convolution
with a mask is the same as filtering with a flipped mask. But when you filter, to
compute the value of N at some location, you place the flipped version of the mask
at some location in the image; you multiply together the elements of the image and
the mask that lie on top of one another, ignoring everything in the image outside
the mask; then you sum the results (Figure 5.1). Reindex the two windows to be
vectors, and the result is a dot product.

6.1.1 Pattern Detection by Convolution

The properties of a dot product explain why a convolution is interesting: it can
be used as a very simple pattern detector. Recall that if u and v are unit vectors,
then uTv is maximized when u = v and minimized when u = −v. Interpreting u
as a vector of kernel weights and v as a vector of image values suggests the rough
rule of thumb: filters respond most strongly to image patterns that look like the
filter kernel.

The mean of v presents an issue. Write 1 for a vector of ones. Then uT (v +
c1) = uTv + cuT1, so you can increase or decrease the response of the filter by
adding a constant to the image window unless uT1 = 0. This suggests that the
best pattern detection is obtained by using a filter with zero mean. If uT1 = 0,
the magnitude of u just changes the scale of the response to the filter. The local
maxima (or minima) of the response are what is important – these signal where a
pattern is present – and so the magnitude of u doesn’t really matter.

Useful Fact: A zero-mean filter is a pattern detector that responds
positively to image patches that look like it, and negatively to patches that
look like it with a contrast reversal

6.1.2 Normalized Convolution

If the mean of the kernel is zero, scaling the image will scale the value of the
convolution. If you test the convolution value against a threshold to find a pattern,
you will find more instances when the image gets brighter, and fewer when it gets
darker, which is usually inconvenient. One strategy to build a somewhat better

87

88 Chapter 6 Applications of Convolution

Convolution
Normalized
Convolution

Positive Negative Positive Negative

FIGURE 6.1: Various zero-mean filters applied to a monochrome image of a pineapple
plant (shown in the top row, for reference), to show filters are simple pattern
detectors. Details in the text. Image credit: Figure shows my photograph of a
pineapple in the Singapore botanical garden.

pattern detector is to normalize the result of the convolution to obtain a value that
is unaffected by scaling the image. For example, smooth the image with a Gaussian
to obtain G, then form

Cij =
Nij

Gij + ϵ

(remember, Nij was obtained by convolving the image with some zero-mean kernel).
Here G is an estimate of how bright the image is. Most images have all positive

Section 6.1 Finding Patterns 89

pixels (a zero pixel value is usually a sign of camera problems) so using ϵ to avoid
dividing by zero isn’t essential. But note that ϵ > 0 causes the score to saturate if
the image is very dark. This makes sense because a group of very dark pixels is more
likely to have a pattern present through thermal noise. The process that produces C
is known as normalized convolution, and produces an improvement in the detector.
Figure 6.1 compares normalized convolution to convolution. The right two frames
show the positive and negative components of the normalized convolution (divide
the filter responses by an estimate of image intensity). The normalized convolution
is more selective. Responses are shown on a scale where zero is dark and a strong
response is light. It is now more usual to manage these difficulties by learning
kernels that behave well (Section 22.6).

Useful Fact: Normalized convolution normalizes the score for a pattern
using an estimate of intensity to produce a better pattern detector.

6.1.3 ReLU’s

Write W for a kernel representing some pattern you wish to find. Assume that W
has zero mean, so that the filter gives zero response to a constant image. Notice
that N =W∗I is strongly positive at locations where I looks likeW, and strongly
negative when I looks like a contrast reversed (so dark goes to light and light goes
to dark) version ofW. Usually, you would want to distinguish between (say) a light
dot on a dark background and a dark dot on a light background. Write

relu(x) =

{
x for x > 0
0 otherwise

(often called a Rectified Linear Unit or more usually ReLU). Then relu(W ∗ I) is
a measure of how well W matches I at each pixel, and relu(−W ∗ I) is a measure
of how well W matches a contrast reversed I at each pixel. The ReLU will appear
again.

Figure 6.1 give some examples. The filters are shown on the far left, each in
the top left hand corner of a field of zeros the same size as the image; this gives some
sense of spatial scale. The lightest value is the largest value of the filter, the darkest
is the smallest. The left two frames show the positive and negative components of
the response to the filter. The positive responses occur where (rather roughly) the
image “looks like” the filter. Similarly, negative responses occur where the image
“looks like” a contrast reversed version of the filter. Notice how the filters really
are pattern detectors (the big dark blob gets responses from big dark blobs, and
the small bright blob gets responses from small bright blobs), but they are not very
good pattern detectors. Something that causes a bar filter to response will often
also get a response from a blob filter. Further, the region of small bright leaves on
the bottom of the image produces strong positive responses. The filter is linear, so
bright patterns that don’t look like the filter tend to give responses as strong as

90 Chapter 6 Applications of Convolution

Kernel block 2

Kernel block 1

x

y

d

X

Y

D

Feature

map 1

Feature

map 2

FIGURE 6.2: On the left, two kernels (now 3D, as in the text) applied to a set of
feature maps produce one new feature map per kernel, using the procedure of the
text (the bias term isn’t shown). Abstract this as a process that takes an x× y × d
block to an X × Y ×D block (as on the right).

dark patterns that do. It can be useful to suppress small responses, and it is easy to
do so by subtracting a small constant from the response before applying the ReLU
(exercises).

Useful Fact: A ReLU can be used to separate positive (use relu(x))
and negative responses (use relu(−x)) to produce a better pattern detector.

6.1.4 Multi-Channel Convolution

The description of convolution anticipates monochrome images, and Figure 6.1
shows filters applied to a monochrome image. Color images are naturally 3D ob-
jects with two spatial dimensions (up-down, left-right) and a third dimension that
chooses a slice or channel (R, G or B for a color image). Color images are sometimes
called multi-channel images. Multi-channel images offer a natural for representa-
tions of image patterns, too — two dimensions that tell you where the pattern is
and one that tells you what it is. For example, the results in Figure 6.1 can be
interpreted as a block consisting of eight channels (four patterns, original contrast
and contrast reversed). Each slice is the response of a pattern detector for a fixed
pattern, where there is one response for each spatial location in the block, and so
are often called feature maps (it is entirely fair, but not usual, to think of an RGB
image as a rather uninteresting feature map).

For a color image I, write Ikij for the k’th color channel at the i, j’th location,
and K for a color kernel – one that has three channels. Then interpret N = I ∗ K

Section 6.1 Finding Patterns 91

FIGURE 6.3: Multichannel convolution easily yields a simple detector for colored
patterns. Image credit: Figure shows my photograph of a pineapple in the Singapore
botanical garden.

as

Nij =
∑
kuv

Ik,i−u,j−vKkuv

which is an image with a single channel. This N is a single channel image that
encodes the response to a single pattern detector. Much more interesting is an
encoding of responses to multiple pattern detectors, and for that you must use
multiple kernels (often known as a filter bank). Write K(l) for the l’th kernel, and
obtain a feature map

Nl,ij =
∑
kuv

Ik,i−u,j−vK(l)
kuv.

This notation is quite clunky, because it isn’t a three dimensional convolution (look
at the directions of the indices). This never matters for our purposes. Another
clunky feature of the notation is that applying the same kernel to each layer of a
color image requires a fairly odd set of kernels (exercises). It has two enormous
virtues. First, convolution can be used to detect colored patterns (Figure 6.3).
Second, convolution becomes an operation that turns a three dimensional object
– a stack of channels, a multi-channel image or a feature map, according to taste
– into another such object, so you can apply a convolution to the results of a

92 Chapter 6 Applications of Convolution

convolution.

Remember this: Convolution and filtering are largely equivalent. Con-
volution can be used to smooth images and to detect patterns. ReLU’s can
be used to manage contrast reversal effects. Multichannel convolution can
be used to build pattern detectors for color images. Multichannel convolu-
tion with R kernels will map a block of data structured as C ×M ×N (by
convention, C is the number of channels and M and N are spatial dimen-
sions) to a block of data structured as R× U × V .

6.1.5 Representing Images with Filter Banks

In the image in Figure 6.1, the leaves of the pineapple plant look like disorganized
thick stripes. The leaves of the plant at its base are quite different, and look more
like repeated small spots. These are examples of textures – somewhat unstructured
patterns that are quite characteristic. Textures are widespread and quite distinctive
– a field of pebbles looks quite different from a stand of corn; a cluster of pine needles
looks very different from an expanse of bark; and so on.

Figure 6.1 also suggests a way to represent textures, and so images. Think
of a texture as a collection of small patterns, arranged in some distinctive way.
An image region showing a field of pebbles would have many spots, some small,
some large and most medium, but very few thin bars. In contrast, an image region
showing a cluster of pine needles would have many thin bars, pointing in about the
direction, but very few small or large spots. Then to build an image representation:
(a) construct a vocabulary of patterns; (b) find out which patterns are present at
which pixel; and then (c) building a summary of which patterns are present in a
region.

Because the patterns are likely so variable, an elaborate or detailed pattern
detector is likely to be unhelpful – something that precisely detects a pine needle
would need to be tuned to exactly the right angle, which would be a nuisance – so
it is natural to use filters as pattern detectors. However, it is helpful to distinguish
between, say, light thin bars on dark backgrounds (possible pine needles) and dark
thin bars on light backgrounds (possible gaps between needles).

For the moment, assume the vocabulary of patterns is given, represented as a
filter bank. Then the next two steps are straightforward. To find the patterns in an
image, construct the response of all the filters at all points and apply a ReLU. Stack
these responses into a multi-channel image. To compute a summary, construct a
local weighted average of each channel of the multi-channel image at each pixel.

Section 6.2 Denoising 93

no noise

0.1

0.3

1 2 3 4
Kernel sigma ->

Original

FIGURE 6.4: Smoothing an image with a gaussian kernel is an effective way to
suppress additive Gaussian noise. Left column the original image, followed by
versions smoothed with a gaussian kernel with σ = 1, σ = 2, σ = 3 and σ = 4.
Top row shows results on a noise free image; middle row shows results on an
image with additive stationary gaussian noise with standard deviation 0.01, where
the value of a pixel ranges from 0 to 1; bottom row shows results on an image
with additive stationary gaussian noise with standard deviation 0.1. Notice how
(a) smoothing blurs the original image; (b) more smoothing leads to more blur; (c)
smoothing suppresses noise (so a smoothed version of a noisy image is close to the
smoothed version of the original); and (d) more smoothing suppresses more noise.
Image credit: Figure shows Robert Forsyth’s photograph of a goby on its nest in
Lake Michigan.

Remember this: Images can be represented using the outputs of multi-
ple filters, formed into a bank. Convolutions with simple filter kernels will
find the x- and y-derivatives of an image, yielding the image gradient. This
gradient estimate is significantly affected by image noise.

6.2 DENOISING

6.2.1 Suppressing Noise with Filters

The simplest model of image noise is the additive stationary Gaussian noise (or
Gaussian noise) model, where each pixel has added to it a value chosen indepen-
dently from the same normal (Gaussian – same Gauss, different sense) probability
distribution. This distribution almost always has zero mean. The standard devi-
ation is a parameter of the model. Figure 6.4 shows some examples of additive

94 Chapter 6 Applications of Convolution

1 2 3 4
Kernel sigma ->

0.001

0.01

0.1

Original

FIGURE 6.5: Images at various noise levels smoothed with various gaussian kernels.
The noise here involves picking pixel locations uniformly at random in the image,
then flipping them either full light or full dark. The number on the far right shows
the probability of a pixel being flipped (so at 0.001, a 30 × 30 window should have
about one flipped pixel in it; at 0.01, a 10×10 window should have about one flipped
pixel in it; and at 0.1, a 3× 3 window should have one flipped pixel in it). Left the
original image, followed by versions smoothed with σ = 1, σ = 2, σ = 3 and σ = 4.
Notice how (a) smoothing blurs the original image; (b) more smoothing leads to
more blur; (c) smoothing suppresses noise (so a smoothed version of a noisy image
is close to the smoothed version of the original); and (d) more smoothing suppresses
more noise. The noise-free image is top left in Figure 6.4. Image credit: Figure
shows Robert Forsyth’s photograph of a goby on its nest in Lake Michigan.

stationary Gaussian noise.

Images can be quite effectively denoised because “pixels look like their neigh-
bors”. This important and very reliable slogan is in scare quotes because, while
it is an extremely important practical guide, making it precise is neither easy nor
particularly useful. Generally, pictures show objects which are span a large number
of pixels, and where the shading changes relatively slowly over the surface of the
object. This means that the value at a pixel is likely to be close to the value at
its neighbor. Although this isn’t true of every pixel – otherwise there wouldn’t
be edges in images – it is true of most pixels. If you have a pixel whose value is
unknown, looking at its neighbors will almost always yield a good estimate. A pixel
that does not look like its neighbors is suspect.

Check that the smoothing used in the downsampling strategy of Section 3.2.4
is a convolution with a gaussian kernel. This procedure is called gaussian smooth-
ing or very often just smoothing. It turns out that this procedure is very good at
suppressing many kinds of image noise. Figure 6.4 shows examples of suppressing
additive Gaussian noise, and the exercises exercises explore some details. Gaus-
sian smoothing can suppress the effects of other noise processes, too (Figure 6.5).

Section 6.2 Denoising 95

0.001

0.01

0.1

3 5 7
Window size ->

Original 9

FIGURE 6.6: Images at various noise levels smoothed with a median filter. The
noise here involves picking pixel locations uniformly at random in the image, then
flipping them either full light or full dark. The number on the far right shows the
probability of a pixel being flipped (so at 0.001, a 30× 30 window should have about
one flipped pixel in it; at 0.01, a 10 × 10 window should have about one flipped
pixel in it; and at 0.1, a 3 × 3 window should have one flipped pixel in it. Left
the original image, followed by versions where the median is taken in windows of
different sizes. Notice how (a) the median filter preserves edges rather well, even
over big windows; (b) bigger windows lead to more noise suppression; and (c) texture
details are suppressed by the median, with bigger windows suppressing more. Image
credit: Figure shows Robert Forsyth’s photograph of a goby on its nest in Lake
Michigan.

The choice of σ (or scale) for the Gaussian follows from the following consid-
erations:

• If the standard deviation of the Gaussian is very small—say, smaller than one
pixel—the smoothing will have little effect because the weights for all pixels
off the center will be very small.

• For a larger standard deviation, the neighboring pixels will have larger weights
in the weighted average, which in turn means that the average will be strongly
biased toward a consensus of the neighbors. This will be a good estimate of a
pixel’s value, and the noise will largely disappear at the cost of some blurring.

• Finally, a kernel that has a large standard deviation will cause much of the
image detail to disappear, along with the noise.

6.2.2 Median Filters

Most image noise tends to result in pixels not looking like their neighbors. However,
gaussian smoothing is not always effective at estimating the true value of noisy

96 Chapter 6 Applications of Convolution

no noise

0.1

0.3

3 5 7
Window size ->

Original 9

FIGURE 6.7: Images at various noise levels smoothed with a median filter. The noise
here is additive Gaussian noise. Left the original image, followed by versions where
the median is taken in windows of different sizes. Top row shows results on a noise
free image; middle row shows results on an image with additive stationary gaus-
sian noise with standard deviation 0.01 (where the value of a pixel ranges from 0 to
1); bottom row shows results on an image with additive stationary gaussian noise
with standard deviation 0.1. Notice how (a) the median filter preserves edges rather
well, even over big windows; (b) bigger windows lead to more noise suppression; and
(c) texture details are suppressed by the median, with bigger windows suppressing
more. Image credit: Figure shows Robert Forsyth’s photograph of a goby on its nest
in Lake Michigan.

pixels. For example, look closely at Figure 6.5. The noise process – a Poisson noise
process, sometimes called salt and pepper noise – picks pixel locations uniformly
at random in the image, then flips the result either full light or full dark. This
means that a noisy pixel contains no information, and might be very different from
its neighbors. If you compute a weighted average in a region that contains a noisy
pixel, that weighted average might be severely disrupted by the noise, even if the
center is a clean pixel. For example, think of a dark neighborhood on the goby where
noise has turned one pixel bright – the bright pixel will dominate the average unless
it contains a very large number of pixels with quite large weights. And in that case,
the image will be blurry.

This suggests the entirely natural alternative of computing a median in a
neighborhood as an estimate of the value at a pixel. As Figure 6.6 shows, this can
be very effective at suppressing noise. Notice an attractive feature of the median
filter – it tends not to blur edges, even when it strongly smoothes the interior of
image regions. Median filters are somewhat more expensive computationally than
smoothing, but deal fairly well with additive gaussian noise as well as salt and
pepper noise (Figure 6.7)

Section 6.2 Denoising 97

Noised Filters

0

0.01

0.1

FIGURE 6.8: Derivative of gaussian filters, equivalent to applying a finite difference
to a smoothed image, very significantly improve estimates of derivatives. Compare
this figure with Figure 5.3. Rows show image, horizontal derivative and vertical
derivative, where derivatives are estimated by convolution with difference of gaus-
sian filters. The filters are shown at the top. As you should expect, one looks like
a dark bar next to a light bar, the other looks like a dark bar below a light bar. As
should be apparent from the filters, the smoothing is the same in each direction.
First row is noise free image; others have additive Gaussian noise added, with
standard deviation shown on the right. Notice how this noise hardly affects deriva-
tives. The derivatives are scaled so that positive values are bright, negative values
are dark, and 0 is mid-range. Although the scale is chosen per row, the derivative
images look the same from row to row – this means that each row has about the same
largest magnitude value. Image credit: Figure shows Robert Forsyth’s photograph
of historical dock pilings in Lake Michigan.

98 Chapter 6 Applications of Convolution

6.2.3 Application: Derivative of Gaussian Filters

Because convolution is associative, smoothing an image and then differentiating
it is the same as convolving it with the derivative of a smoothing kernel. First,
differentiation is linear and shift invariant. This means that there is some kernel
that differentiates. Given a function I(x, y),

∂I

∂x
= K(∂/∂x) ∗ I.

Write the convolution kernel for the smoothing as S. Now

(K(∂/∂x) ∗ (S ∗ I)) = (K(∂/∂x) ∗ S) ∗ I = (
∂S

∂x
) ∗ I.

Usually, the smoothing function is a gaussian, so an estimate of the derivative can
be obtained by convolving with the derivative of the gaussian (rather than convolve
and then differentiate), yielding

∂gσ
∂x

=
1

2πσ2

[
−x
2σ2

]
exp−

(
x2 + y2

2σ2

)
∂gσ
∂y

=
1

2πσ2

[
−y
2σ2

]
exp−

(
x2 + y2

2σ2

)

As they should (Section ??), derivative of gaussian filters look like the effects they
are intended to detect. The x-derivative filters look like a vertical light blob next
to a vertical dark blob (an arrangement where there is a large x-derivative), and so
on.

Large gradients in images are interesting (Chapters ?? and ??) because they
tend to occur on the outlines of objects, at shadow boundaries, and so on. Generally,
if there is a large x derivative at a pixel, there will be a large x derivative at
neighboring pixels. Smoothing across the direction of the derivative may result in
smeared or blurred derivatives; but smoothing along the direction of the derivative
will tend to average the value at points with similar derivatives and improve the
noise resistance. It is quite usual to use

∂gσ
∂x

=
1

2πσsσb

[
−x
2σ2

s

]
exp−

(
x2

2σ2
b

+
y2

2σ2
s

)
∂gσ
∂y

=
1

2πσsσb

[
−y
2σ2

s

]
exp−

(
x2

2σ2
b

+
y2

2σ2
s

)

where σb > σs. Smoothing results in much smaller noise responses from the deriva-
tive estimates, and more smoothing yields less noisy, but more blurry, gradients
(Figure 6.8 and 6.9).

Section 6.2 Denoising 99

Noised Filters

0

0.01

0.1

FIGURE 6.9: Derivative of gaussian filters, equivalent to applying a finite difference
to a smoothed image, very significantly improve estimates of derivatives. Compare
this figure with Figure 5.3. As should be apparent from the filters, the smoothing
is over a much larger range along the derivative direction than across it (compare
Figure 6.8). Image credit: Figure shows Robert Forsyth’s photograph of historical
dock pilings in Lake Michigan.

Remember this: Smoothing with a Gaussian will denoise images. An
alternative that works better for some kinds of noise is a median filter, which
is not linear and is not a convolution. Smoothing with a Gaussian then
differentiating will obtain an image gradient estimate that is less sensitive to
noise. This process is better represented as convolution with the derivative
of Gaussian.

100 Chapter 6 Applications of Convolution

Section 6.3 You should 101

6.3 YOU SHOULD

6.3.1 remember these terms:

A zero-mean filter is a pattern detector. 87
Normalized convolution is better for pattern detection than convo-

lution. 89
ReLU’s help in pattern detection. 90
Convolution and filtering are crucial building blocks. 92
Applications of convolution include representing images with a filter

bank and computing the image gradient. 93
Applications of convolution further include denoising images and ob-

taining a low-noise gradient estimate. 100

6.3.2 remember these facts:

A zero-mean filter is a pattern detector. 87
Normalized convolution is better for pattern detection than convo-

lution. 89
ReLU’s help in pattern detection. 90
Convolution and filtering are crucial building blocks. 92
Applications of convolution include representing images with a filter

bank and computing the image gradient. 93
Applications of convolution further include denoising images and ob-

taining a low-noise gradient estimate. 100

6.3.3 remember these procedures:

6.3.4 be able to:

• Recognize a bank of filters as a way to represent small patterns in images.

• Denoise an image by smoothing with either Gaussian or median filters.

• Form a gradient estimate using derivative of Gaussian filters.

• Use the model of sampled functions in simple calculations.

• Recognize interpolation as a convolution that passes from a sampled function
to a continuous function.

102 Chapter 6 Applications of Convolution

EXERCISES

QUICK CHECKS

6.1. Why would a zero-mean filter be a poor choice for smoothing Gaussian noise?
6.2. Why is a non zero-mean filter a poor choice of pattern detector?
6.3. Why is a normalized convolution useful?
6.4. Why is a normalized convolution useful?
6.5. Why does “subtracting a small constant from the response before applying the

ReLU” help suppress small responses to a pattern detector?
6.6. Why does “subtracting a small constant from the response before applying the

ReLU” (Section 6.1.3) help suppress small responses to a pattern detector?
6.7. Is normalized convolution linear in the convolution kernel?
6.8. Is normalized convolution linear in the image?
6.9. Is multichannel convolution linear in the convolution kernel?

6.10. Is multichannel convolution linear in the image?
6.11. Can you normalize multichannel convolution?
6.12. Can you construct a zero-mean kernel for multichannel convolution?

LONGER PROBLEMS

6.13. This exercise explores smoothing of additive Gaussian noise. Write I for an
image whose i, j’th entry is Iij . Form Nij = Iij + σξij , where ξij is an in-
dependent, identically distributed sample from a standard normal distribution
(this has mean 0 and standard deviation 1). This means that, at each pixel in
the image, you draw a sample from a standard normal distribution, scale it by
σ, then add it to the pixel value. Write K for some (2k + 1) × (2k + 1) filter
kernel, and Ξ for the noise image (i.e. the image whose i, j’th component is
ξij).
(a) Form M = K ∗ Ξ. Show that each pixel of this image is a sample of

a normal distribution whose mean is 0 and whose standard deviation is∑
ij K

2
ij . What condition on k ensures every pixel of M is independent

of every other? For given k, characterize the pixels that are guaranteed
to be independent of one another? What is the covariance of Mij and
Mi+r,j+s for given r and s?

(b) Use the results of the previous exercise to argue that Gaussian smoothing
suppresses Gaussian noise.

6.14. This exercise explores smoothing of another noise model. Write I for an image
whose i, j’th entry is Iij . Form Nij = Iij +σδij , where δij is an independent,
identically distributed sample from a Bernoulli distribution with parameter p
(so with probability p, δij = 1 and with probability 1 − p, δij = 0). Equiva-
lently, at each pixel in the image, you flip a biased coin. If it comes up heads
(probability p), add σ to the pixel value. Write K for some k× k filter kernel,
and ∆ for the noise image (i.e. the image whose i, j’th component is δij).
(a) Assume p is very small. Describe M = K ∗∆ qualitatively. What is the

mean of each pixel? What is the variance of each pixel?
(b) Use the results of the previous exercise to argue that Gaussian smoothing

suppresses this noise.
6.15. Write I for an image whose i, j’th entry is Iij . Form Nij = Iij + σξij ,

where ξij is an independent, identically distributed sample from a standard
normal distribution (this has mean 0 and standard deviation 1). This means

Section 6.3 You should 103

that, at each pixel in the image, you draw a sample from a standard normal
distribution, scale it by σ, then add it to the pixel value. Write Ξ for the noise
image (i.e. the image whose i, j’th component is ξij) and D for the filter kernel

−1 1 .

(a) Form M = D ∗ Ξ. Show that each pixel of this image is a sample of
a normal distribution whose mean is 0 and whose standard deviation is√
2. Use this to explain why finite difference filters yield poor estimates

of gradients in the presence of noise.
(b) Write G for a 7 × 7 Gaussian kernel with scale 1. Form M = D ∗ G ∗ Ξ.

Show that each pixel of this image is a sample of a normal distribution
whose mean is 0. What is the standard deviation of this distribution?
Use this to explain why finite difference filters yield better estimates of
gradients in the presence of noise when the image is smoothed.

PROGRAMMING EXERCISES

6.16. This exercise seeks N filters that are “most useful” describing a set of im-
age windows. Collect a set of at least 500 natural images from the internet
(for example, you could use the Berkeley Segmentation Dataset at https:

//github.com/BIDS/BSDS500). Reduce these images to intensity images by
averaging the R, G, and B components. From each image, obtain 10 win-
dows of size 5×5, selected at randomly chosen locations (use different random
locations for different images). Straighten these windows into 25 dimensional
vectors (write xi for the i’th such). Compute the mean m of these vectors, and
subtract the mean from each (write zi = xi−m for the i’th vector resulting).
(a) Find the filter that is “best” at describing the vectors zi. Define this to

be a vector f such that (a) fT f = 1 and (b)
∑

i

(
fT zi

)2
. Show that you

can find this vector by forming

S =
∑
i

ziz
T
i ,

then finding the eigenvector with largest eigenvalue. Rearranging this
vector into a filter kernel will give the filter.

(b) Now consider the collection of vectors obtained by projecting off the com-
ponent in the direction of f from each of the original zi, equivalently
z′i = zi − (zTi f)f . You could find the filter that is “best” at describing
this new set of vectors using the procedure of the previous exercise. Show
that you can find this filter by finding the eigenvector of S with second
largest eigenvalue and rearranging the vector into a filter.

(c) Find the 10 “best” filters using the procedure above. Visualize them by
arranging all 10 into a single image where 0 is shown as mid gray, negative
values are darker, and positive values are lighter. You may need to scale
the image to see effects. Do you see anything interesting in the appearance
of the filter kernels?

(d) Repeat the exercise above for color windows and multichannel convolu-
tion. Again, do you see anything interesting in the appearance of the filter
kernels?

