
C H A P T E R 7

Application:Denoising Images by
Optimization

You are given a noisy image and asked to produce the original. The detailed
rules may vary somewhat in different applications. For example, you might have
only a rough model of the noise process; you may have a detailed and accurate model
of the noise process (though this is unusual); the noise might be deterministic, but
depend on parameters you cannot know (this occurs with underwater images); you
may need to denoise very few images (or even only one – astronomy applications);
you may need to denoise any image, or any image of a particular class; and so on.

Denoising is an important topic for at least two reasons. First, it is extremely
useful. Second, the way to denoise an image is to exploit information about what
images are “like”, so studying denoising strategies is a good way to build intuitions
about images. For example, gaussian smoothing (Section 6.2.1) or median filtering
(Section 6.2.2) to suppress noise works fairly well because most image pixels “look
like” their neighbors.

7.1 CONSIDERATIONS

This chapter uses a master recipe for denoising. Write N for a noisy image, and
think of denoising as finding a denoised image D that is (a) close to N and (b)
more like a real image. Write

C(D) = [distance from D to N] + [unrealism cost for D]
= [data term] + [penalty term]

and choose a D that minimizes this cost function. Methods differ mainly by the
penalty term, which has a significant effect on how hard the optimization problem
is. This framework leads to very strong denoising methods, at the cost of solving
what can be a nasty optimization problem.

Procedure: 7.1 Denoising by Optimization: Master recipe

Denoise a noisy image N by finding a denoised image D that is (a) close
to N and (b) more like a real image. Do this by minimizing the cost
function

C(D) = [distance from D to N] + [unrealism cost for D]
= [data term] + [penalty term] .

104

Section 7.1 Considerations 105

Image R G B

FIGURE 7.1: RGB color components are heavily correlated, as you can see by looking
at images where only one component has been smoothed.. The top row shows the
R, G, and B components of the color image at the left. The bottom row shows
color images obtained by smoothing one component, then recombining all three.
Notice that smoothing any of the R, G, B components alone leads to odd color
effects at edges (G is particularly bad). Image credit: Figure shows my photograph
of a building in downtown Manaus.

7.1.1 Denoising Color Images

Representing color is a broad subject, and Section 30.3 is a brief introduction. The
particular color representation one uses can be important in denoising. Section 8.1
showed that gradients in R, G and B tend to appear in the same place. This
is the result of two effects: the R, G and B components of an image are highly
correlated (meaning that RGB is not a particularly good color representation for
many applications); and isoluminant changes in color really are rare.

Correlation between R, G and B means that, given (say) the true R and G
components of an image, you can do a fair job of predicting B. This means that
adjusting the components independently is dangerous: adjustments to R and G
should be reflected in B, say. The effect is easily observed. Smoothing one of R, G,
or B (but not the others) results in strange color effects (exercises , Figure 7.1).

Correlation between RGB components is an experimental fact about the
world. Remarkably, one can choose a color space that largely decorrelates any
image rather well. LAB is such a color space. It has three attractions: first, it

106 Chapter 7 Application:Denoising Images by Optimization

L A BImage

FIGURE 7.2: Decorrelating the components of a color image before smoothing is
important, but one does not need to do this on a per-image basis. The top row
shows the L, A, and B components for this image on the right. Because these
components can be negative, they have been scaled and shifted so that a zero value is
mid gray, the largest value is bright and the smallest is dark (the same scale has been
applied to each component so you can see relative sizes). The bottom row shows
color images obtained by smoothing one component, then recombining all three.
Smoothing L results in a blurry color image; smoothing A or B alone largely has no
effect. This means one can use sophisticated methods on the L component and just
smooth the A and B components. Image credit: Figure shows my photograph of a
building in downtown Manaus.

splits images into an intensity component (L) and two color components (A) and
(B), which largely do not depend on intensity; second, these components are largely
decorrelated spatially; and third, short distances in the color space are rather a good
representation of human perception of the size of color changes. Section 30.3.2 offers
more detail on the construction of LAB.

Humans are much better at perceiving spatial detail in intensity than they are
in color (this has to do with a variety of physiological details about how the human
color system works). In an appropriately chosen color space, the color components
can be heavily smoothed without affecting human perception of the image all that
much (Figure 7.2), as long as the intensity component is not touched. For each
denoising method, I will apply the following strategy to deal with color images:
decompose into LAB; use sophisticated denoising on L; and just use a smoothed
version of A and B (because mostly people don’t notice irregularities in the color
components, as above).

Section 7.1 Considerations 107

7.1.2 Evaluating by Comparing to Ground Truth

An important part of denoising is knowing how well a procedure actually works.
For the moment, assume that you have access to a collection of test image pairs,
where you have a noisy version and the clean version. You can then evaluate by
comparing the denoised noisy image with the clean image. The main question is
what number to compute from the pair.

One standard evaluation statistic is the mean PSNR or peak signal-to-noise
ratio. For each pair (N , C) of noisy version - clean version, first denoise the noisy
image to get D. Now compute the PSNR for the pair (D, C), using

psnr(D, C) = 20 log

max
ij
Cij√∑

ij (Dij − Cij)2

and average that PSNR over pairs. The PSNR has some good properties: as D
gets closer to C, the PSNR gets larger; and psnr(sD, sC) = psnr(D, C) for s > 0 (so
you can’t change the PSNR by scaling the images).

In some applications, versions of the original image that are uniformly slightly
brighter or slightly darker might be acceptable, but the PSNR will penalize a
method that can’t estimate the brightness of the ground truth image. In these
situations, one can use

psnr(D, C) = 20 log

max
ij
Cij

min
s

√∑
ij (sDij − Cij)2

.

PSNR doesn’t really take human perception into account, so that reconstruc-
tions with quite good PSNR might look bad to a user, and reconstructions with
quite bad PSNR might look good. For example, imagine the reconstruction is the
original image, but shifted by one pixel to the left (obtain the missing column by
copying its neighbor). The PSNR might be quite bad, but the reconstruction would
be good and would look good.

An ideal evaluation metric should not be seriously affected by shifts like this.
A natural construction is to compare summary properties of windows of pixels
rather than comparing pixels. This construction leads to the SSIM or structural
similarity index metric. The clean image and the denoised image are broken into
quite small overlapping windows; summary statistics for these windows are com-
puted and compared, with a metric that is quite robust to changes in intensity; and
the comparison is averaged over all windows. Implementations of SSIM appear in
most API’s.

Human observers have a variety of preferences that SSIM does not fully ac-
count for. For example, humans like sharp edges without ringing but can be re-
laxed about whether the edge is in the right place. As another example, humans
are surprisingly good at perceiving lines, and dislike edges that are close to, but
not on, a line. The LPIPS or Learned Perceptual Image Patch Similarity met-
ric is an attempt to deal with this. The clean image and the denoised image are

108 Chapter 7 Application:Denoising Images by Optimization

broken into overlapping windows; deep network features are computed for win-
dows; a weighted difference is computed for these features; and the comparison
is averaged over all windows. The features are learned using procedures quite
like that of Chapters 17 and 18. The reference Implementation of LPIPS is at
https://github.com/richzhang/PerceptualSimilarity, and many APIs offer
LPIPS evaluation.

7.1.3 Evaluating without Comparison

Sometimes it is difficult to find pairs of clean images and denoised versions. For
example, you might not have clean versions of the noisy images; if you don’t trust
simulations of the noise model, you won’t have pairs. Evaluation in this case in-
volves telling whether a denoised image is “like an image”, using an image quality
metric. This is sometimes called blind evaluation. These metrics measure how much
something that purports to be a natural image is “like an image.” You should sus-
pect that this is extremely hard to do accurately. If you could measure how much
something is “like an image”, then denoising might be straightforward – just make
small adjustments to it until it really is a natural image.

Metrics tend to take the following form. Choose some patches in the image;
for these, compute some feature vectors; fit a probability model to these feature
vectors; and compare the parameters of the fitted model to the parameters of a
model fitted to a large number of natural images. Choosing some patches, rather
than all, seems to improve the accuracy of the measure, likely because different
images contain different numbers of “boring” patches – patches of, say, constant
color – and this might bias the model. This recipe was established by the NIQE
or Natural Image Quality Evaluator metric. Implementations of NIQE appear in
most APIs.

Remember this: An important master recipe for denoising is to find
something that is (a) close to the original noisy image and (b) like a real
image. Telling how much something is like a real image is difficult. You
should denoise images in LAB or a similar color representation; typically,
use a sophisticated algorithm on the intensity component, and smooth the
color components with a gaussian. Evaluate a denoising procedure either by
comparing results with ground truth (useful comparisons are PSNR; SSIM;
and LPIPS) or using an image quality metric (like NIQE).

7.2 DENOISING BY OPTIMIZATION

For this Chapter, the data term in the master recipe is∑
ij

(Dij −Nij)
2

(the ssd of Section 4.3.1). The penalty term is much more interesting. The crucial
rule of thumb – pixels tend to be like their neighbors – suggests that the penalty

Section 7.2 Denoising by Optimization 109

Noisy version

Original

3 1 0.3 0.1

Reconstructions

Residuals

FIGURE 7.3: A color image (upper left), with additive gaussian noise (lower left),
denoised by penalizing the gradient as in Section 7.2.1 at various settings of λ. The
denoised images are in the top row, with residual (noisy image - reconstructed
image) in the bottom row. The residual is shown on a scale where positive val-
ues are light, negative values are dark, and 0 is mid-gray. The noisy image was
transformed to LAB; the L component was smoothed with WLS; and the A and B
components were smoothed with a gaussian kernel. Notice the strong color noise in
the residual. The image noise is independent in R, G and B – so colors can change
sharply – and the denoiser is very effective at suppressing this effect. Notice how,
as λ is increased, the image becomes rather blurry (compare Figure ?? and Figure
??). Image credit: Figure shows my photograph of marmosets in Sao Paulo.

function needs to look at gradients in D.

7.2.1 Penalizing the Gradient

The simplest use of gradients would be to denoise N by looking for D that is
(a) close to N in squared error; and (b) mostly has small gradients. Rearrange
all images into vectors, so N is vector n, and so on. This representation gives a
convenient expression for the gradient. There are matrices Dx and Dy that compute
the gradient from the image (rearrange the finite differences of Section 5.1.4, or the
derivative of gaussians of Section 6.2.3, exercises). The gradient of D can be
represented by (

Dx

Dy

)
d

110 Chapter 7 Application:Denoising Images by Optimization

(where the vector of x-derivatives is stacked on the vector of y-derivatives). In turn,
the sum of gradient magnitudes for D is given by

dT
[
DT

xDx +DT
y Dy

]
d.

You can find a D that is (a) close to N in squared error; and (b) mostly has small
gradients by finding

argmin
u

1

2
[u− n]

T
[u− n] +

λ

2
uT
[
DT

xDx +DT
y Dy

]
u

for some λ that weights the significance of the gradient term against the error term.
Now write K =

[
DT

xDx +DT
y Dy

]
. The minimum occurs for d where

(I + λK)d = n

(differentiate and set to zero exercises). The solution is very like what you
would get if you simply smoothed the image with a gaussian (Figure ??).

7.2.2 Weighted Least Squares

The problem with penalizing the gradient is that image should have strong gradients
in some places. Suppressing these graidents doesn’t make the image closer to a real
image. Ideally, if there is good evidence in support of a large gradient in the
denoised image, that large gradient should not be penalized. The weighted least
squares filter (almost always WLS) seeks a D that is (a) close to N in squared
error; (b) mostly has small gradients; and (c) has high gradients when N does.

WLS weights the cost of a gradient in the reconstructed image using the
gradients of N . At locations where the gradient of N is large, it should be cheap to
have a large gradient in D. WLS achieves this using diagonal matrices of weights
obtained from N . Write Ax(n) for the weights on the x-derivative and Ay(n) for
the weights on the y-derivative.

At a location where the value of Ay is small, D could have a large y-derivative,
but at locations where the value is large, D must have a small y-derivative. The
key question here is the choice of Ax and Ay. A large derivative in D should
only occur when the derivative of N is large and reliable. Small derivatives N are
untrustworthy, and should not appear in D. So at pixels where n has a small x
derivative, the relevant term in Ax should be big. Similarly, when n has a large
x derivative, the relevant term in Ax should be small. A fair choice is to form
w = Dxn, and then the i, i’th element of Ax is

1

|wi |α + ϵ

where α is some power, typically between 1.2 and 2, and ϵ is a small positive
constant to avoid division by zero; Ay follows.

The new image d (a vector version of the denoised image D) should then solve

argmin
u

[u− n]
T
[u− n] + λuT

[
DT

xAT
xAxDx +DT

y AT
yAyDy

]
u

Section 7.2 Denoising by Optimization 111

Noisy version

0.03 0.01 0.005 0.001

Reconstructions

Residuals

FIGURE 7.4: The color image of Figure ?? with additive gaussian noise (left), de-
noised using weighted least squares (WLS; Section 7.2.2) at various settings of λ.
The denoised images are in the top row, with residual (noisy image - reconstructed
image) in the bottom row. The residual is shown on a scale where positive val-
ues are light, negative values are dark, and 0 is mid-gray. The noisy image was
transformed to LAB; the L component was smoothed with WLS; and the A and B
components were smoothed with a gaussian kernel. Notice the strong color noise in
the residual. The image noise is independent in R, G and B – so colors can change
sharply – and the denoiser is very effective at suppressing this effect. Notice how,
as λ is increased, the image does not become blurry (compare Figure ??). Edges are
largely preserved, but detail is lost with increasing λ. Image credit: Figure shows
my photograph of marmosets in Sao Paulo.

where the first term pushes u to be like n, the second term controls the derivatives of
u and λ is some weight balancing the two terms. Write L =

[
DT

xAT
xAxDx +DT

y AT
yAyDy

]
;

then solving this problem is a matter of solving

F(λ)d = (I + λL)d = n.

WLS denoising tends to produce less blurry images than just suppressing large
gradients (Figure 7.4).

There are several elements in this recipe that will recur. Notice that d is a
nonlinear function of n (because elements of n are used in the construction of L).
Assume L is known; then d is linear in n. You should think about this process as
one in which n is used to choose a different linear operation to map n to the value
of d at each pixel.In principle, one could insist that L be formed from the denoised
image u, but that would result in a very nasty optimization problem indeed.

Natural variants of this procedure involve estimating an “easy” denoised ver-
sion d̂ of the original image, then using that to form L.

112 Chapter 7 Application:Denoising Images by Optimization

7.2.3 L2 and L1 Norms

The cost function for Section 7.2.1 penalizes the square of the L2 norm of the
derivative (definition in a box).

Definition: 7.1 The L2 norm

The L2 norm of a vector v is given by

||v ||2 =
√
vTv.

Warning:It is quite common to refer to the square of the L2 norm as the L2
norm. I will try not to do this, because it’s wrong, but you’ll bump into this in the
literature rather often.

Vectors with small L2 norm tend to have many small components, implying
that the cost function encourages gradients to have small components. Ideally,
the cost would encourage gradients with many zero components, so regions have
constant brightness if possible, and a very slow ramp in intensity might be replaced
with a constant value. You can achieve this by penalizing the L1 norm of the
gradients (definition in a box).

Definition: 7.2 The L1 norm

The L1 norm of a vector v is defined by

||v ||1 =
∑
i

|vi |.

A vector with small L1 norm will tend to have zero elements. You can see
this by comparing two cases. Consider choosing a vector u that is (a) close to some
reference vector g and (b) has small L2 norm. You find this vector by minimizing

C2(u) =
1

2
[u− g]

T
[u− g] +

λ

2
uTu.

The u that minimizes C2(u) is (
1

1 + λ

)
g.

In turn, this means that you can’t force u to have zeros by making λ large (except
when it is infinity, which isn’t a useful case).

Now consider choosing a vector u that is (a) close to some reference vector g
and (b) has small L1 norm. You find this vector by minimizing

C1(u) =
1

2
[u− g]

T
[u− g] + λ||u ||1.

Actually minimizing this expression is a little tricky. The penalty term isn’t dif-
ferentiable, which creates some inconvenience, but it is a sum over elements of u,

Section 7.2 Denoising by Optimization 113

0.1 100 10 1 0.1

FIGURE 7.5: The color image of Figure ??, with additive gaussian noise at σ = 0.1
denoised using total variation denoising (TVD; Section 7.2.4) at various settings
of λ. The denoised images are in the top row, with residual in the bottom row.
The residual is shown on a scale where positive values are light, negative values
are dark, and 0 is mid-gray. The noisy image was transformed to LAB; the L
component was smoothed with TVD; and the A and B components were smoothed
with a gaussian kernel. Notice the strong color noise in the residual. The image
noise is independent in R, G and B – so colors can change sharply – and the
denoiser is very effective at suppressing this effect. Notice how, as λ is increased,
the image does not become blurry (compare Figure ??). Edges are largely preserved,
but detail is lost with increasing λ. Image credit: Figure shows my photograph of
marmosets in Sao Paulo.

so you can minimize term by term. Now consider the i’th element of u. If |gi | is
sufficiently large, then it is easy to show that

ui =
gi

1 + λ

(exercises). Now consider what happens when gi = λ. If ui = 0, then the cost
will be λ2/2, but if ui = ϵ > 0 where ϵ is small, the cost will be (1/2)(λ2+ ϵ2). This
analysis implies correctly that if −λ < gi < λ, ui = 0. In turn, using an L1 norm
as a penalty on the gradients tends to cause the reconstruction to have many zero
gradients

Remember this: Penalizing the L1 norm tends to produce vectors with
numerous zeros.

114 Chapter 7 Application:Denoising Images by Optimization

0.3 100 10 1 0.1

FIGURE 7.6: The color image of Figure 7.4, with additive gaussian noise at σ = 0.3,
denoised using total variation denoising (TVD; Section 7.2.4) at various settings
of λ. Details in caption of Figure 7.5.

7.2.4 Total Variation Denoising

In total variation denoising, the penalty is an L1 norm to the gradient. There are
a variety of ways of doing this. In one approach, one seeks

argmin
u

1

2
[u− g]

T
[u− g] + λ [||Dxu ||1 + ||Dyu ||1] .

Note this cost function isn’t differentiable, but it is convex. The optimization
problem for this cost function is well understood, and is relatively easily managed
(though beyond our scope). However, you should notice that the penalty encourages
zeros in the x and y components of the gradient, which isn’t necessarily the same
as zero gradient magnitudes. One could get a solution where the zeros in the x
components are not aligned with the zeros of the y components, so the penalty is
biased against some gradient directions but not others. Most strong image APIs will
have a total variation denoising implementation (I used SciPy’s implementation).

An alternative formulation requires a bit more notation. Write dx,i(u) for the
i’th component of Dxu, and so on. Then solve

argmin
u

1

2
[u− g]

T
[u− g] + λ

[∑
i

√
d2x,i + d2y,i

]

which is also not differentiable. Solutions require rather more elaborate work than
solutions for the previous formulation, and tend to be somewhat slower, but are
not biased.

7.2.5 Image Deblurring with a Regularizer

Denoising takes something that isn’t quite an image and finds an image that is very
like it. Many phenomena can produce something that isn’t quite an image. For

Section 7.2 Denoising by Optimization 115

100 10 1 0.1

FIGURE 7.7: The color image of Figure 7.4, with a variant of poisson noise where
a randomly chosen pixel in a randomly chosen color channel is flipped, denoised
using total variation denoising (TVD; Section 7.2.4) at various settings of λ. The
denoised images are in the top row, with residual in the bottom row. The residual
is shown on a scale where positive values are light, negative values are dark, and
0 is mid-gray. The noisy image was transformed to LAB; the L component was
smoothed with TVD; and the A and B components were smoothed with a gaussian
kernel. Notice the strong color noise in the residual. The image noise is independent
in R, G and B – so colors can change sharply – and the denoiser is very effective
at suppressing this effect. Notice how, as λ is increased, the image does not become
blurry (compare Figure ??). Edges are largely preserved, but detail is lost with
increasing λ. Image credit: Figure shows my photograph of marmosets in Sao
Paulo.

example, take an image and blur it. The result isn’t an image, but it is quite close
to one. Recall from Section 22.6 that blurring is a linear operation. Write t for the
true image in vector form, d for the deblurred estimate in vector form, b for the
observed image in vector form, and B for the linear operator that blurs. Assume
B is known.Notice b is not exactly the blurred image. At the very least, there is
some error from the numerical representation, and there might be some small noise
present, too. Then

b = Bt+ ξ

(where ξ is a vector of very small errors) and least-squares suggests choosing d that
minimizes

(Bd− b)
T
(Bd− b)

which would involve solving

BTBd = BTb.

The least squares solution is not reliable, because B is a smoothing operator
– say, convolve with a gaussian for concreteness. This means BTB must have some
small eigenvalues, because smoothing suppresses some patterns (which is the whole
point). Note that BTB must also have some eigenvalues fairly close to one, because

116 Chapter 7 Application:Denoising Images by Optimization

Blurred input

5e-3

5e-2

5e-1

1.5e-5

3e-5

5e-5
Ground truth

FIGURE 7.8: Left shows an image blurred with a gaussian, σ = 1; center left
shows regularized least squares reconstructions for different values of the regular-
ization constant; center right shows deblurred images, using the WLS strategy
of Section ??; and right shows the ground truth image. Notice that there must be
many very small eigenvalues in B, because when the regularization constant is small,
the reconstruction is almost unrecognizable (the black and white “snakeskin” pattern
is a set of very high frequency components that are easily smoothed out – which is
why they correspond to small eigenvalues). Increasing the regularization constant
helps control these patterns, but increasingly darkens the reconstruction. The WLS
method requires an estimate of the gradient, which I took from the least-squares
reconstruction. WLS helps control these components, but the best reconstruction
certainly isn’t perfect. Scoring whether a reconstruction is “like” an image is dif-
ficult. Image credit: Figure shows my photograph of a delicious monster in Sao
Paulo.

there are some patterns that change very little when smoothed. The patterns that

are suppressed by smoothing must be exaggerated by
(
BTB

)−1
, and may be very

heavily exaggerated. This is a serious problem, because the reconstruction is(
BTB

)−1 BTb =
(
BTB

)−1 BT [Bt+ ξ]

= t+
(
BTB

)−1 BT ξ.

Now even if ξ is very small, the term
(
BTB

)−1 BT ξ is likely large, because
(
BTB

)−1

has some large eigenvalues, and BT ξ is likely to have some components in the
direction of the corresponding eigenvectors.

There is a traditional procedure to handle very small eigenvalues in a matrix,
known as regularization. One seeks a minimum of

C(u) = (Bu− b)
T
(Bu− b) + λuTu

by solving
(BTB + λI)d = BTb

Section 7.2 Denoising by Optimization 117

Blurred input

5e-3

5e-2

5e-1

1.5e-5

3e-5

5e-5
Ground truth

FIGURE 7.9: Left shows an image blurred with a gaussian, σ = 3; center left shows
regularized least squares reconstructions for different values of the regularization
constant; center right shows deblurred images, using the WLS strategy of Section
??; and right shows the ground truth image (more details in the caption of Figure
7.8). This reconstruction problem is extremely difficult for these methods. Image
credit: Figure shows my photograph of a delicious monster in Sao Paulo.

for some choice of λ > 0, chosen to get good results. Notice that the map from
blurry image b to deblurred image d is linear in b, and should be shift invariant,
too exercises .

7.2.6 Deblurring with the Master Recipe

You can see regularization either as penalizing solutions that are too big, or as
constructing a matrix that is close to (BTB)−1 but does not have small eigenval-
ues. Alternatively, you can see regularization as a rather crude version of the cost
function for Section 7.2.2, where the penalty term discourages images that are “too
big”, so:

C(u) = [Term comparing Bu to b] + [Term evaluating realism of u]

= [data term] + [penalty term]

meaning it is possible to apply the master recipe (Section 7.2). I will apply the
methods of Sections 7.2.2 and 7.2.4 according to the master recipe, but other choices
are possible.

Weighted least squares: The main question to deal with in using weighted
least squares is how to form Ax and Ay. One strategy is to form a regularized least
squares estimate û, so

(BTB + λI)û = BTg

then use this estimate to form Ax and Ay. The problem then becomes large-scale
linear algebra. Figures 7.8 and 7.9 show some results.

118 Chapter 7 Application:Denoising Images by Optimization

Blurred input

5e-3

5e-2

5e-1

Ground truth

4e-2

6e-2

8e-2

FIGURE 7.10: Left shows an image blurred with a gaussian, σ = 1; center left shows
regularized least squares reconstructions for different values of the regularization
constant; center right shows deblurred images, using the TVD strategy of Section
??; and right shows the ground truth image (more details in the caption of Figure
7.8). TVD can control the problem high frequency components, with an appropriate
choice of weight. Image credit: Figure shows my photograph of a delicious monster
in Sao Paulo.

Blurred input

5e-3

5e-2

5e-1

1e-2

Ground truth
2e-2

4e-2

FIGURE 7.11: Left shows an image blurred with a gaussian, σ = 3; center left shows
regularized least squares reconstructions for different values of the regularization
constant; center right shows deblurred images, using the TVD strategy of Section
??; and right shows the ground truth image (more details in the caption of Figure
7.8). TVD has a much harder time controlling these components than for Figure
7.10. Image credit: Figure shows my photograph of a delicious monster in Sao
Paulo.

Section 7.2 Denoising by Optimization 119

Total variation denoising: One natural strategy to use total variation
denoising for upsampling and deblurring is to apply total variation denoising to
a least squares prediction. Doing anything else requires substantial optimization
tricks, sketched in the exercises . Figures 7.10 and 7.11 show some results.

Denoising by controlling high spatial frequency components is quite helpful,
but deblurring exposes difficulties with the approach. Compare Figures 7.11 and 7.9
with Figures 7.10 and 7.8, and notice how much harder it is to deblur a really blurry
image than it is to deblur a slightly blurry image. This is because there is very
much less image evidence of high spatial frequencies (exercises) and so the
corresponding eigenvalues of (BTB)−1 are very large and very hard to control. Fur-
ther, all the methods we have seen require engaging with inconvenient optimization
problems. Chapters 22.6 and 22.6 describe much richer classes of procedure that
can be used for deblurring.

Remember this: A variety of different denoising methods can be de-
rived from the master recipe by using different penalties. Finding a solution
involves solving problems of varying levels of difficulty. An L2 penalty on
the gradient of the reconstructed image means the reconstructed image is a
linear function of the orginal image and is easy to find, but tends to produce
blurry reconstructions. Weighted least squares allows the reconstruction to
have large gradients when the noisy image does. The reconstruction is no
longer a linear function of the noisy image, but is still relatively easy to find,
and not to be so blurry. Total variation denoising applies an L1 penalty to
the gradient. The resulting optimization problem is tricky, but efficient
solutions are known. TVD tends to produce reconstructions that have zero
gradient at many locations. The master recipe applies to deblurring as well,
but now optimization problems need to be regularized.

120 Chapter 7 Application:Denoising Images by Optimization

7.3 YOU SHOULD

7.3.1 remember these definitions:

The L2 norm . 112
The L1 norm . 112

7.3.2 remember these procedures:

Denoising by Optimization: Master recipe 104

7.3.3 be able to:

• FOO

Section 7.3 You should 121

EXERCISES

QUICK CHECKS

7.1. Differentiation is linear; you can represent an image as a vector; and you can
represent an estimate of its gradient as a vector. Does this guarantee the
existence of a matrix that estimates the gradient (as a vector) from an image
(as a vector)?

7.2. Write n for an N ×N image represented as a vector, and Dx for a matrix that
estimates the x-derivative of this vector. What fraction of the entries of Dx

are zero?
7.3. Section 7.2.5 says: “ Notice that the map from blurry image b to deblurred

image d is linear in b, and should be shift invariant, too.” Explain. This
remark implies that you can deblur with a convolution. Why?

7.4. Section 7.2.5 says: “ Notice that the map from blurry image b to deblurred
image d is linear in b, and should be shift invariant, too.” This remark implies
that you can deblur with a convolution. Why? What is the kernel?

7.5. Section 7.2.6 says that it is harder to deblur a really blurry image than it is to
deblur a slightly blurry image, because some eigenvalues of (BTB)−1 are very
large and very hard to control. Explain.

7.6. Assume you know an image is blurred using a gaussian kernel, and you know
the σ of the kernel. You could deblur using the convolution theorem. What
might go wrong if you do?

7.7. Assume you know an image is blurred using a gaussian kernel, and you know
the σ of the kernel. The convolution theorem explains why it is much harder
to deblur a heavily blurred image than it is to deblur a lightly blurred image.
Explain.

7.8. Is the cost function

C1(u) =
1

2
[u− g]T [u− g] + λ||u ||1

differentiable?
7.9. Imagine you ignore the question of differentiability, and minimize

C1(u) =
1

2
[u− g]T [u− g] + λ||u ||1

by gradient descent. You will find the estimated solution you get does not
have many zeros in it, even though you are using an L1 norm. Explain what
happened.

7.10. Section 7.2.4 has: “However, you should notice that the penalty encourages
zeros in the x and y components of the gradient, which isn’t necessarily the
same as zero gradients.” Explain.

LONGER PROBLEMS

7.11. (a) Show that

1

2
[u− n]T [u− n] +

λ

2
uT
[
DT

x Dx +DT
y Dy

]
u

is minimized by u such that

(I + λK)u = n

(b) How would you solve this linear system?

122 Chapter 7 Application:Denoising Images by Optimization

7.12. You wish to find the u that minimizes

1

2
[u− g]T [u− g] + λ||u ||1.

(a) Show this isn’t differentiable. Where is it not differentiable?
(b) Show the cost function is a sum over elements of u and so can be minimized

term by term.
(c) Show that if ui > 0, the term (1/2)(ui − gi)

2 + λ|ui | is differentiable in
ui.

(d) Use this to show if |gi | is sufficiently large, then

ui =
gi

1 + λ

(e) Show that if 0 < gi < λ then ui = 0. Do this by showing if ui = 0, then
the cost will be λ2/2, but if ui = ϵ > 0 where ϵ is small, the cost will be
(1/2)(λ2 + ϵ2).

(f) Show that if −λ < gi ≤ 0 then ui = 0
7.13. Show that the u that minimizes

C(u) = (Bu− b)T (Bu− b) + λuTu

is obtained by solving
(BTB + λI)d = BTb.

(a) Can BTB + λI have an eigenvalue smaller than λ?

PROGRAMMING EXERCISES

7.14. Obtain a collection of at least 100 RGB images. You will use these to evaluate
a method to choose the weight λ in weighted least squares, for denoising images
with different noise models. The exercise assumes your images have pixel values
in the range 0 to 255/256 (scale your images if they don’t).
(a) Implement a weighted least squares denoiser. You should use a strong

linear algebra API (I used NumPy), and use its sparse matrix procedures.
Your denoiser should accept a noisy image and a value of λ and produce
a denoised version.

(b) Set up a range of at least 5 different values of λ (typically, a geometric se-
ries like 0.001, 0.005, 0.025, 0.125, 0.625 is appropriate). Split your images
into a training set (80%) and a validation set (20%). Use the training set
to find the value of λ that gives the best average PSNR for images cor-
rupted with additive gaussian noise with σ = 0.01, σ = 0.1 and σ = 0.3.
How well does the training set PSNR predict the validation set PSNR?
Does the same λ work for different values of σ.

(c) Repeat the previous experiment using the following noise model. At each
pixel, with probability p/2 the R, G, and B values are flipped to 255/256;
with probability p/2, to zero; otherwise, it is left alone. Use p = 1/900,
p = 1/100 and p = 1/25.

7.15. Obtain a collection of at least 10 RGB images and reproduce the effects of
Figure 7.1. Divide the RGB space into 4096 boxes (16 × 16 × 16) and count
the pixels into these boxes. This is a color histogram. Use this histogram as a
way to identify colors that are “rare” in the original images but appear in the
versions with one smoothed component.
(a) Does smoothing one component produce rare colors?

Section 7.3 You should 123

(b) Can you find another method to evaluate the color effects produced by
smoothing just one component?

(c) Is it always the case that smoothing G produces more significant color
effects than smoothing R or B?

(d) Check your method(s) for identifying color effects by comparing what hap-
pens when you smooth one of RGB and what happens when you smooth
one of LAB (which should produce less pronounced effects).

124 Chapter 7 Application:Denoising Images by Optimization

