
C H A P T E R 2

Obtaining Images

Your first encounter with an image as something to compute with (rather than
look at) is likely as an array for an intensity image, or set of three arrays for a color
image. Knowing how the image ended up in this form is important if you want to
interpret it. A quite detailed model of the geometry and physics underlying images
appears in Part X. A simple model will have to do for the moment.

2.1 CAMERAS

The image you see as three arrays starts as a spectral energy field – Power P
moving through space. This power is a function of position in 3D X, direction ω,
time t, and wavelength λ, so you can write P (X, ω, t, λ). This power is created by
light leaving light sources, reflecting from surfaces, and eventually arriving at the
entrance to the camera (Figure 2.1). This is usually but not always a lens.

2.1.1 The Pinhole Camera

A pinhole camera is a light-tight box with a very small hole in the front. Think
about a point on the back of the box. The only light that arrives at that point
must come through the hole, because the box is light-tight. If the hole is very small,
then the light that arrives at the point comes from only one direction. This means
that an inverted image of a scene appears at the back of the box (Figure 2.3). An
appropriate sensor (CMOS sensor; CCD sensor; light sensitive film) at the back of
the box will capture this image.

Pinhole camera models produce an upside-down image. This is easily dealt
with in practice (turn the image the right way up). An easy way to account for
this is to assume the sensor is in front of the hole, so that the image is not upside-
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FIGURE 2.1: A high-level model of imaging. Light leaves light sources and reflects
from surfaces. Eventually, some light arrives at a camera and enters a lens system.
Some of that light arrives at a photosensor inside the camera.
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Spectral energy density Pixel values

FIGURE 2.2: Because each pixel in the sensor averages over a small range of direc-
tions and positions, the process mapping the input spectral energy distribution to
pixel values can be thought of as sampling. On the left, is a representation of the
energy distribution as a continuous function of position. The value reported at each
pixel is the value of this function at the location of the pixel (right).

down. One could not build a camera like this (the sensor blocks light from the
hole) but it is a convenient abstraction. There is a standard model of this camera,
in a standard coordinate system (Figure 2.4). Notice that the y axis goes down
in the image. While this is usual for image coordinate systems, there are further
reasons to do this. Most people’s intuition is that z increases as one moves into
the image, and orienting the y axis downward in the image allows me to achieve
this, have x in the usual direction, and use a right-handed coordinate system. The
pinhole – usually called the focal point – is at the origin, and the sensor is on the
plane z = f . This plane is the image plane, and f is the focal length. We ignore
any camera body and regard the image plane as infinite.

Under this highly abstracted camera model, almost any point in 3D will map
to a point in the image plane. We image a point in 3D by constructing a ray through
the 3D point and the focal point, and intersecting that ray with the image plane.
The focal point has an important, distinctive, property: It cannot be imaged, and
it is the only point that cannot be imaged.

Similar triangles yields that the camera maps a point X in 3D to a point x
on the image plane by:

X =

 X
Y
Z

→
 fX/Z

fY/Z
f

 = x.

Notice that the z-coordinate is the same for each point on the image plane, so it is
quite usual to ignore it and use the model

X =

 X
Y
Z

→ (
fX/Z
fY/Z

)
= x.

The focal length just scales the image. In standard camera models, other scaling
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Pinhole

FIGURE 2.3: In the pinhole imaging model, a light-tight box with a pinhole in it views
an object. The only light that a point on the back of the box sees comes through the
very small pinhole, so that an inverted image is formed on the back face of the box.

effects occur as well, and we write projection as if f = 1, yielding

X =

 X
Y
Z

→ (
X/Z
Y/Z

)
= x.

The projection process is known as perspective projection. The point where the z-
axis intersects the image plane (equivalently, where the ray through the focal point
perpendicular to the image plane intersects the image plane) is the camera center.

Remember this: Most practical cameras can be modelled as a pinhole
camera. The standard model of the pinhole camera maps

(X,Y, Z)→ (X/Z, Y/Z).

Figure 28.1 shows important terminology (focal point; image plane; camera
center).

2.1.2 Images as Sampled Functions

Various processes in lens and camera map some of the light that arrives to some
sensor at the back of a camera, usually in a way that is very largely consistent with
the pinhole camera model. The sensor is made up of a grid of receptors, each of
which transduces the energy that arrives into a number (or some numbers). Each



Section 2.1 Cameras 21

X

Z

(X, Y, Z)

z=f

(fX/Z, fY/Z, f)

camera center

focal point

image plane

Y

FIGURE 2.4: The usual geometric abstraction of the pinhole model. The box doesn’t
affect the geometry, and is omitted. The pinhole has been moved to the back of the
box, so that the image is no longer inverted. The image is formed on the plane
z = f , by convention. Notice the y-axis goes down in the image. This allows me to
use a right handed coordinate system and also have z increase as one moves into
the image.

receptor on the sensor corresponds to a single pixel (or spatial location) in the array
that is read from the camera.

The lens arranges that light arriving at x on the sensor all arrived from one
point (X in Figure 2.1) on a surface in 3D, assuming it is in focus. At x, the
sensor collects power P for some period ∆t, then passes the result on to the camera
electronics. The sensor responds to energy P∆t, so collecting more power for a
shorter period or less power for a longer period will result in indistinguishable
results. The value of the pixel at i, j on the grid is a sample of a function of
position (Figure 2.2).

The vast majority of sensors in current use are linear, so doubling the amount
of light arriving at the camera while fixing ∆t will double the output. Linear image
sensors present problems. The dynamic range (ratio of largest value to smallest
value) of spectral energy fields can be startlingly large (1e6: 1 is often cited).
Simple consumer cameras report 8 bits (256 levels) of intensity per channel. A
picture from a linear camera that reports 8 bits per channel will look strange,
because even relatively simple scenes have a higher dynamic range than 255. One
can build cameras that can report significantly higher dynamic ranges, but this
takes work (Section 28.3.4).
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FIGURE 2.5: Camera response functions for three different cameras, plotted
from the comprehensive dataset available at https: // cave. cs. columbia. edu/
repository/ DoRF . The horizontal axis is the “input” – the P∆t observed by the
camera, scaled to 0−1. The vertical axis is the “output” – the response of the cam-
era, again scaled to 0−1. Notice that locations that would be quite dark for a linear
sensor will be lighter; but as the linear sensor gets very bright, the output recorded
by the camera grows slowly. This means that the range of outputs is smaller than
the range of inputs, which is helpful for practical cameras. This response function is
typically located deep in the camera’s electronics. Typical consumer cameras apply
a variety of transforms before reporting an image, though one can often persuade
cameras to produce an untransformed, linear response image (a RAW file).

2.1.3 Camera Response Functions

If the camera has a linear response and a dynamic range of 255, either a lot of the
image will be too dark to be resolved, or much of the image will be at the highest
value, or both will happen. This is usually fixed by ensuring that the number
digitized by the camera isn’t linearly related to brightness. Internal electronics
ensures that the camera response function mapping the intensity arriving at the
sensor to the reported pixel value looks something like Figure 2.5. This increases
the response to dark values, and reduces it to light values, so that the overall
distribution of pixel values is familiar. Typically, the function used approximates
the response of film (which isn’t linear) because people are familiar with that.

2.1.4 Color Images

Humans see color by comparing the response of different kinds of photoreceptor
at nearby locations (Chapter 30). The main difference between these kinds of
photoreceptor is in the sensitivity of the sensor with wavelength. Roughly, one
type of sensor responds more strongly to longer wavelengths, another to medium
wavelengths, and a third to shorter wavelengths (there are other kinds of sensor,
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FIGURE 2.6: There are two main ways to obtain color images. One can (as in left)
build a multiccd camera with three imaging sensors. Each has a different response
to wavelengths. The cheaper and lighter alternative is to use one imaging sensor
(right) but have a mosaic of pixels with different responses. This can be achieved
by placing a small filter on each sensor location. Far right shows one traditional
such pattern of filters, a Bayer pattern.

and other differences).

Cameras parallel this process. The sensors used for the R (or red) layer of an
RGB image respond more strongly to longer wavelengths; for the G (or green) layer,
to medium wavelengths; and the B (or blue) to shorter wavelengths. Cameras must
be engineered to produce the response of three different types of sensor at the same
place. The usual strategy is to use one imaging sensor, and arrange that different
pixels respond differently to wavelength. Typically, there are three types of pixel (R,
G, and B), interleaved in a mosaic (Figure 2.6). This means that at many locations
the camera does not measure R (or G, or B) response, and it must reconstruct this
response from the value at nearby pixels. Generally, mosaic patterns have more
G pixels than R or B pixels. This is because G pixels are sensitive to a wider
range of visible wavelengths than R and B pixels, and so the reconstruction yields
better results. Regular mosaic patterns can create effects in images, and there
are demosaicing algorithms to remove these effects. an alternative is to use three
imaging sensors and arranging for each sensor to receive the same light (lenses,
mirrors, that sort of thing). Such multiccd cameras tend to be larger, heavier and
more expensive than single sensor cameras.

2.1.5 Pointwise Image Transformations

The camera response function of Section 2.1.3 is one example of a pointwise image
transformation. Most such transformations occur after the image has been read
out of the camera. You take the array of pixels and apply some function to each
pixel value. Simple, but useful, examples include: forming a negative (map x to
1 − x); contrast adjustment (choose a function that makes dark pixels darker and
light pixels lighter); and gamma correction (using a function that corrects for a
quirk of image encoding, Figure 2.7).
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gamma=2

gamma=0.5

FIGURE 2.7: Many imaging and rendering devices have a response that is a power
of the input, so that output = Cinputγ , where γ is a parameter of the device. One
can simulate this effect by applying a transform like those shown in the center
(curves for several values of γ). Note that you can remove the effect of such a
transform – gamma correct the image – by applying another such transform with an
appropriately chosen γ. The image on the left is transformed to the two examples
on the right with different γ values. Image credit: Figure shows my photograph of
a river in Singapore.

Remember this: Cameras consist of lens systems (which arrange that
light leaving a point on a surface arrives at a sensor), sensors (which sample
the amount of arriving energy) and electronics (which map the sampled
values into the numbers reported by the camera). Most cameras have linear
sensors, but apply a camera response function to the sensor outputs. Color
images can be obtained by arranging that three different sensors see the
same light (heavy and expensive), or using a mosaic pattern of filters on a
single sensor (cheap, but presenting reconstruction problems).

2.2 SENSING DEPTH

It is often very useful to measure the 3D location of points directly. Methods
include: stereopsis; camera projector stereo; structured light; and time of flight
sensors.
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FIGURE 2.8: When two pinhole cameras view a point, the 3D coordinates of the point
can be reconstructed from the two images of that point. This applies for almost ev-
ery configurations of the cameras. It is an elementary exercise in trigonometry
(exercises ) to determine P from the positions of the two focal points, the lo-
cations of the point in the two images, and the distance between the focal points.
Considerable work can be required to find appropriate matching points, but the pro-
cedures required are now extremely well understood (Chapters 35). One can now buy
camera systems that use this approach to report 3D point locations (often known as
RGBD cameras). Here we show a specialized camera geometry, chosen to simplify
notation. The second camera is translated with respect to the first, along a direction
parallel to the image plane. The second camera is a copy of the first camera, so the
image planes are parallel. In this geometry, the point being viewed shifts somewhat
to the left in the right camera.

2.2.1 Sensing Depth with Stereo

Stereo uses two pinhole cameras somewhat offset from one another. Figure 2.8
sketches this idea. The key is that if you know where the cameras are with respect
to one another, and where a 3D point projects to in each of two perspective images,
simple trigonometry will reveal where it is in 3D. Calibrating the relative geometry
of the cameras is now well understood (Chapter 33), as is determining which (if
any) point in the first image corresponds to which in the second (Chapter 35), and
recovering a good depth model from this information (Chapter 35). Stereo rigs can
be very cheap and accurate, and they have the great advantage that measurement
is passive – one does not have to send signals into the environment.

But there are limits to stereopsis. Measuring large depths with two cameras
that are close together requires highly accurate estimates of point positions in im-
ages. Figure 2.8 shows a simple geometry that illustrates the problem. The point P
projects to x1 in camera 1, and to x2 in camera 2. Notice because of the carefully
chosen camera geometry, the y-coordinates of x1 and x2 are the same; only the
x-coordinates differ. Write x1 for the x-coordinate of x1; X for the x-coordinate of
P , and so on. From the triangles in that figure, we have

d = x2 − x1 = f
(X −B)−X

Z
= −f B

Z
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FIGURE 2.9: Top shows two pinhole cameras viewing a rectangular depression in
a flat surface. As the images show, camera on the left can see the right wall,
and that on the right can see the left wall. This means that these walls cannot be
reconstructed directly using trigonometry, and so the depth map will have holes in
it. The depth map here is shown with a fairly common convention, where nearer
surfaces are lighter, farther surfaces are darker, and holes are “infinitely far away”.

meaning that as P gets further away, the disparity (difference between projected
positions in left and right cameras) gets smaller, and so gets harder to measure.
Resolving small differences in large depths is going to be hard. This means that
either the baseline (distance between camera focal points, B in Figure 22.6) is large
(and so the equipment is bulky) or one can’t reliably measure large depths.

A second important limit is that some points will appear in one camera, but
not in the other (an effect known as Da Vinci stereopsis, illustrated in Figure 2.9),
and so their depth cannot be measured by stereo. The result is quite characteristic
“holes” in depth maps obtained from stereo cameras .

2.2.2 Camera-Projector Stereo

The key difficulty in stereo is establishing which point in the left image corresponds
to which in the right. This can be tricky even now for some kinds of object. In
camera projector systems, one uses one camera and one projector. This projector
is constructed to have geometry like that of a camera. Light leaves an analog of
the focal point, and travels along rays through pixel locations.
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FIGURE 2.10: The projector on the left casts planes of light into the scene. These
are viewed by a camera. Their shape in the image (right) is a cue to the depth in
the scene.

The simplest projector casts planes of light (Figure 2.10) which are swept
across the scene. In these structured light systems, the pattern of the curves made
by those planes reveals depth.

An alternative is to modulate the light through each pixel. In this case, the
light through each different pixel location is uniquely identifiable. The geometry
of Figure 2.8 still applies, but now the ray from f1 to P is a ray of emitted light.
Because the geometry hasn’t changed, large depths are hard to measure without
large baselines, and there will still be holes in depth maps.

A natural modulation trick is for the projector to display a sequence of (say)
8 patterns. Each pixel in each pattern is either dark or light. If the patterns are
properly chosen, and if the camera observes all of them, you can think of each ray
through the projector focal point as being tagged with eight bits. These eight bits
identify the ray. Many rays will have the same bit pattern. If depth limits are
known for the scene, and if the patterns are appropriately chosen, this ambiguity
is not important.

For any baseline, there will be some practical limit to the largest and smallest
depths that can be measured. This has an interesting consequence. In the geometry
of Figure ??, imagine we fire a ray of modulated light from f1 through x1. If it is
observed in camera 2 (it might not be, because the geometry of Figure 2.9 also still
applies), we have a very good idea where it will be observed. The y-coordinate will
not have changed and the disparity is limited by the depth range. This means we
can use the same code for rays through two different points in camera 1 as long as
they are sufficiently far apart.

2.2.3 Time of Flight Sensors

Time of flight sensors send a pulse of light out from a laser source, then wait for
the pulse to return to a sensor. The time from flash to return yields the depth to
the surface along the direction of the flash. A moving mirror ensures that depth
can be measured along many rays (a scanning time of flight sensor; Figure 2.11).
Accuracy in this class of sensor depends on very accurate measurements of short
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FIGURE 2.11: A laser flashes a brief pulse of light onto a mirror. The light travels
into a scene, is reflected from an object and returns to the mirror, and is reflected
into a sensor. The time from flash to sensing reveals the distance tot he object.
The mirror can be tilted or rotated to flash the light in different directions, and so
to measure depth along different rays.

time intervals; very accurate timing of the pulses of light. Depth along each ray is
measured at a slightly different time, so the mirror needs to scan rays fast enough
to ensure that moving objects are captured satisfactorily. Such systems are often
called lidar (for LIght Detection And Ranging), by analogy with radar.

Remember this: Depth sensors can be built in a variety of ways.
The main kinds are stereo sensors; camera projector sensors; and time of
flight sensors. Two camera geometry underpins stereo sensors and camera
projector sensors, so that for each kind of sensor, accurate measurements
of large depths require large sensors. Time of flight sensors require quite
complex engineering, and tend to be more expensive.
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2.3 YOU SHOULD

2.3.1 remember these facts:

The pinhole model of a camera . . . . . . . . . . . . . . . . . . . . . 20
Summary of camera facts. . . . . . . . . . . . . . . . . . . . . . . . . 24
Several constructions yield accurate depth cameras. . . . . . . . . . . 28
U-nets are well-behaved methods for image-to-image mapping. . . . 358
Accurate, fast depth and normal predictions can be made at high

speed from most images. . . . . . . . . . . . . . . . . . . . . . 367
Superresolution and defogging are useful applications of image-to-

image mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Classifier: definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Classifier performance is summarised by accuracy or error rate . . . 374
Look at false positive rate and false negative rate together . . . . . . 375
Do not evaluate a classifier on training data . . . . . . . . . . . . . . 377
Cameras: pinhole model . . . . . . . . . . . . . . . . . . . . . . . . . 414
Cameras: perspective effects . . . . . . . . . . . . . . . . . . . . . . . 421
Cameras: Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

2.3.2 be able to:

• Give a brief account of what a camera does.

• Remember how a pinhole camera model works.

• Give a brief account of how depth sensors of each kind work.
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EXERCISES

QUICK CHECKS

2.1. As the pinhole in a pinhole camera gets larger, the image on the image plane
(a) gets brighter and (b) is less focused. Why?

2.2. For a sufficiently small pinhole, diffraction effects cause the image to be defo-
cused. Explain.

2.3. Why do cameras have lenses?
2.4. For smaller ∆t, images will be darker; for larger ∆t, moving objects may have

blurred outlines. Why?
2.5. A common form of camera response function is Intensity(P∆t) = CeγP∆t. Do

you expect γ to be positive or negative? Why?
2.6. Why are mosaiced color CCD cameras more common than multiccd cameras?
2.7. You want to increase the contrast in an image by a pointwise image transfor-

mation that (a) makes dark pixels darker and (b) makes bright pixels brighter.
Why will f(I) = CeγI not achieve this? Sketch a transformation that will.

2.8. Why is it hard to build a stereo camera that is (a) small and (b) good at
measuring large depths?

2.9. What happens in a scanning time of flight sensor if the mirror moves slowly
and objects in the scene move quickly?

2.10. An object is 30m away from a scanning time of flight sensor. How long does
it take for the pulse to travel from camera to object to sensor? You can take
the speed of light to be 3× 108 meters per second.

LONGER PROBLEMS

2.11. Show that, in the geometry of Figure 2.8, d = −f B
Z .


