
C H A P T E R 15

Registration and Overlapping Images

Section 4.3.2 slid color separations over one another to get a best match, and
so a registered color image. Generalizing this procedure is really useful. Back in the
days when photographs were printed on paper by special stores, one way to make
a photograph of a large object was to take several different, overlapping pictures;
print them; place one printed image down on a corkboard; then slide the other
printed pictures around on a corkboard until the overlapping sections of each pair
of pictures show the same things; and then pin them down. The result is a mosaic
– a collection of pictures that have been registered (Figure 15.2). Two pictures are
registered when the overlapping sections of picture show the same things as much
as possible.

Section 4.3.2 showed how to register when the transformation was a transla-
tion. In Section 15.1, I describe how to build mosaics in some detail for this case,
because this allows me to abstract away from most of the machinery of registra-
tion and focus on the useful and interesting product. Registering images when the
transformation is more complicated than a translation requires quite different pro-
cedures; Section 15.2 gives an overview, and Section ?? describes these procedures
for simple cases. The harder cases appear in Chapter ??.

15.1 REGISTERING IMAGES BY TRANSLATION

There are a number of reasons to build mosaics. You might simply not have the
right camera, and so have to assemble a big picture out of small ones. You might
be able to improve resolution in the overlapping portions, because there you have
multiple estimates of pixel values. You might be able to identify moving objects or
important changes by comparing registered images.

For the moment, assume we have two images A (which is aM × aN) and B
(which is bM × bN). These two images are overlapping views of a scene that can
be aligned exactly by a translation. The fact that they can be aligned means that
there is some tx, ty so that Aij ≈ Bi−tx,j−ty for those pixels where the images
overlap. Visualize this as placing B on top of A, then sliding B by tx, ty; then the
parts of A and B that overlap look the same (Figure 15.1). We are given A and B
and must find tx, ty. For the moment, assume that tx, ty are integers.

15.1.1 Building Mosaics by Search

Registering A and B follows the recipe of Section 4.3.2: choose a function that is
smallest when A is registered with B; now search for the (tx, ty) that yield best
value of the cost function.

If the two images really do agree on the overlap, then the SSD is a good
choice of cost function. Find the minimum by computing the value of the SSD
for each translation that results in an overlap, then taking the smallest. If the
range of translations is large, this procedure could be inefficient (improvements in

268

Section 15.1 Registering Images by Translation 269

Scene

Images

Mosaic

FIGURE 15.1: Top shows a set of overhead images of a simple scene. The dark
boundaries show each of three image frames. Center shows the actual images
obtained in these frames. Notice how the first agrees with the second in a box
(the intersection of first and second frames in the top part of the figure) and the
second agrees with the third in another box. Bottom shows the mosaic that can
be recovered by sliding images with respect to one another. This mosaic can’t show
features that haven’t been imaged, but does show the relative configuration of scene
components.

Section 15.1.3), but it is a reasonable model for the moment. Notice that there is
no point in translating both images (exercises). Choosing one image to stay
in a fixed position is equivalent to choosing the coordinate system for the mosaic.
The other image is then translated to the right position in that coordinate system.

One more step is required to go from two registered images to a mosaic. For
pixels in the overlapping region, there are two estimates of the pixel value (one from
A and one from B). These need to be combined in some way. Not much can be done
with two values, but a mosaic will be generally be constructed out of N different
images, so there might be as many as N different estimates at a given location. It
turns out that there are a variety of interesting possibilities here (Section ??). This
yields the following recipe for building a mosaic, sketched in Figure 15.2.

270 Chapter 15 Registration and Overlapping Images

1

2

3

4

I II III IV

FIGURE 15.2: Top left shows a simple scene with the location of four images; these
are shown on the top right. The steps of creating a mosaic are sketched in the
Roman numeral panes on the bottom. In step I, I1 is placed in the mosaic; in step
II, I2 is registered to I1. This proceeds until there aren’t any images that overlap
(step III, I3 to I1; step IV, I4 to I3; check this yields a treeexercises). Finally,
the overlapping image information is turned into pixel values.

Procedure: 15.1 Building a Mosaic as a Simple Tree

Start with a set of N images {I1, . . . , IN}. Choose I1 to serve as the
root image – the image that is never translated. This image is the initial
mosaic, equivalently, the root of the tree. Now iterate the following step
until there are no images left:

• Place another image by finding an image Il which overlaps
an image Ik already in the mosaic and register it to that image.
Record the translation required to register Ik to Il.

You now have a tree of translations attached to each image exercises
. Summarize the overlapping images into a large image.

The choice of root image may have consequences, and the choice of which
image to place and which image it overlaps will certainly have consequences. For
concreteness, choose Ik (the image outside the mosaic) and Il (the image outside
the mosaic) to be the outside-inside pair that look most like one another. You
could test this, for example, by comparing very heavily downsampled versions of
the images. In some applications, the image with a good overlap will be obvious.
For example, if you build a mosaic out of overhead aerial images, the images are
going to be timestamped, and the next image will overlap rather well with the

Section 15.1 Registering Images by Translation 271

1

2

2

3

3

1

4

4 5

5

FIGURE 15.3: Summarizing the mosaic with a mean shows a ghostly path of moving
objects. Top shows a set of images of a simple scene with a moving object (the white
circle). This is at location 1 in frame 1, and so on (location number on the object,
frame number next to the frame). The background does not move. The frames are
registered to one another to produce a mosaic. Bottom shows what happens if one
averages. The circles affect the average, and appear – one can both background and
object. Compare with Figure 15.4 and Figure 15.5.

current image.

15.1.2 Summarizing Registered Images to form a Mosaic

There are a number of useful ways to summarize the registered images. At many
locations, the recipe will produce a vector containing many components that are
not unknown. Each is an estimate of the “true” pixel value for that location, but
there is some error in this estimate. For example, if a small object is moving in
the scene, it will affect some pixels in each frame. The main options to use as a
summary of this vector are:

• The mean, best if there is no moving object, and one expects that the regis-
tration is very good. Averaging will tend to blur details if the images aren’t
precisely registered, and will show a blurry trail of moving objects, as Fig-
ure 15.3 shows and Figure ?? confirms.

• The median, best if there are moving objects and you want to suppress them;
the median will tend to show the background (because more of the values from
the registered images will be background), and does not blur as much in the
face of misregistration, as Figure 15.4 shows and Figure ?? confirms.

272 Chapter 15 Registration and Overlapping Images

1

2

2

3

3

1

4

4 5

5

FIGURE 15.4: Summarizing the mosaic with a median suppresses moving objects.
Top shows a set of images of a simple scene with a moving object (the white cir-
cle). This is at location 1 in frame 1, and so on (location number on the object,
frame number next to the frame). The background does not move. The frames are
registered to one another to produce a mosaic. Bottom shows what happens if one
summarizes using a median. The moving object spends little time at each pixel, and
so does not change the median – the result shows the background. Compare with
Figure 15.3 and Figure 15.5.

• A preferred image, chosen in some way. Details will mostly not be blurred,
and moving objects will largely be frozen in place (but might appear in more
than one place). The outer edges of images can be prominent, but this can be
suppressed by blending (Figures ?? and ??) Figure 15.3 shows and Figure ??
confirms.

• The value most different from the median, if you want to show object
motion. This will tend to accentuate details, and show a moving object in its
different locations (Figures 15.5 and ??).

Section 15.1 Registering Images by Translation 273

1

2

2

3

3

1

4

4 5

5

FIGURE 15.5: Summarizing the mosaic with the value furthest from the median shows
the path of moving objects. Top shows a set of images of a simple scene with a
moving object (the white circle). This is at location 1 in frame 1, and so on (location
number on the object, frame number next to the frame). The background does not
move. The frames are registered to one another to produce a mosaic. Bottom
shows what happens if one summarizes using the value most different from the
median. The moving object spends little time at each pixel, and so is likely very
different from the median – the result shows the moving object in different locations
against the background. Compare with Figure 15.3 and Figure 15.4.

Remember this: Mosaics are built by registering images to one an-
other. In the simplest case, you start with a root image; repeatedly register
an image to the best overlapping image in the mosaic; then summarize all
the images into a large image. Pixels in the large image may be covered
by no mosaic image or by many. Different choices of summarization pro-
cedure yield different mosaics which emphasize different properties of the
collection.

15.1.3 Improved Translation Estimates

The obvious strategy for minimizing the cost function is: apply each translation;
compute the objective function; then take the translation with smallest value. This
will be slow if the range of translations is large. Notice that if we smoothed and

274 Chapter 15 Registration and Overlapping Images

subsampledA and B to produce a very coarse scale version (say, 8×8) of each image,
we could compute a coarse estimate of m,n from those fairly easily because there
are very few values to search. A coarse estimate of the translation that registers
two coarse scale images can be refined using larger versions of the images. This
observation leads to a really powerful search strategy: register very small versions
of the images, then repeatedly refine the registration estimate using increasingly
large versions until the full size images are registered. This strategy is known as
coarse to fine search.

For example, look at the zebra’s muzzle in Figure 3.9, and think about regis-
tering this image to itself. The 8 × 8 version has very few pixels, and looks like a
medium dark bar, darker at the muzzle end. Finding a translation to register this
image to itself should be fairly straightforward, and unambiguous. Assume we find
m8, n8. In the 16 × 16 version, some stripes are visible. Registering this image to
itself might be more difficult, because the stripes will create local minima of the
cost function (check you follow this remark; think about what happens if you have
the images registered, and then shift the muzzle perpendicular to the stripes). But
if we have an estimate of the translation from the 8 × 8 version, we do not need
to search a large range of translations to register the 16 × 16 version. We need to
look only at four translations: 2 ∗m8, 2 ∗ n8; 2 ∗m8 + 1, 2 ∗ n8; 2 ∗m8, 2 ∗ n8 + 1;
and 2 ∗m8 +1, 2 ∗n8 +1. The same reasoning applies when going from the 16× 16
version to the 32×32 version, and so on. It should be obvious that this is a natural
application of a gaussian pyramid (Section ??). Notice that the recipe applies even
if one subsamples by less than two, though some details change (exercises).

Coarse-to-fine search suggests a way to find pairs of images with a good over-
lap: try to register coarse scale versions of the images with one another. Not all
pairs will register, but those that do with a small enough translation will likely have
a good overlap, and you can use this to obtain an estimate of the extent to which
images overlap.

The translation that registers images can be estimated at a resolution that is
finer than a single pixel. You should expect this – each image has very large numbers
of pixels that are being used to estimate the translation. The main question is
how to get estimates of the translation at a fine resolution. One straightforward
procedure is to upsample the images, using an interpolate, and register the results.
The coarse-to-fine search procedure still applies. For example, you could add layers
to the gaussian pyramid by simply upsampling the images to appropriate sizes,
then proceed as before.

An alternative strategy is to interpolate the cost function. Recall the original
translations were estimated by evaluating the cost function at a set of translations,
then finding the translation with the best cost. Now interpolate the cost function,
and obtain the minimum of the interpolate. This works only if the interpolate has
a minimum that isn’t on a grid point, so at least the bicubic interpolate of Exercise
**** is required. A minor issue results. If the translation isn’t an integer, then the
sampled values of one of two registered images aren’t on grid points. This is easily
dealt with by interpolation.

Section 15.1 Registering Images by Translation 275

1

2

3

4

I II III IV

FIGURE 15.6: Top left shows a simple scene with the location of four images; these
are shown on the top right. The steps of creating a mosaic are sketched in the
Roman numeral panes on the bottom. In this case, the translation of the fourth
image with respect to the first is poorly estimated; more detail in the text.

Remember this: Translation estimates can be made more efficient by
coarse-to-fine search. You can estimate translations at a finer resolution
than the pixel grid by either upsampling the images, or by interpolating the
cost function.

15.1.4 Bundle Adjustment

Our simple procedure does not produce the best possible mosaic. To see this,
assume you have images I1, . . . , I4, as in Figure 15.6, and you introduce them into
the mosaic in that order. Write T2→1 for the translation to align I2 with I1 by
translating I2 to the right place in the mosaic coordinate system. The effect of this
translation is shown in step II in Figure 15.6. Now you estimate T3→1 to register I3
to I1 (Step III). Notice that the patterns in the scene have been chosen to show an
exaggerated case where the registration error between I3 and I1 is likely to be large
(many different horizontal translations of I3 will register with I1 well). Finally, you
estimate T4→3 (Step IV). Notice how error has cascaded. I3 is poorly registered to
I1, and I4 is registered to I3, meaning that I4 is poorly registered to I1.

Notice that this isn’t necessary. Some pixels of I4 overlap I2. If these pixels
contributed to the registration, I4 and I3 could be properly registered. This prob-
lem occurs quite generally – it is not just a result of an odd scene – and is often
referred to as a failure of loop closure. This refers to the idea that if 2 is registered
to 1, 3 is registered to 2, 4 is registered to 3, all the way up to N is registered to
N − 1, N may not be registered to 1 at all well – the loop does not close.

276 Chapter 15 Registration and Overlapping Images

There are several procedures to prevent or control this kind of error propaga-
tion. Start by registering the images by pairs as described. The easiest strategy is
now to repeat: fix all but one image, then register that image to all the others it
overlaps with. This approach can work, but may be slow, because it may take a long
time for improvements to propagate across all the images. The alternative, which
is better but can be onerous, is to fix one image in place, then adjust all others to
register in every overlap. This isn’t a straightforward optimization problem. There
is no need to resolve it in detail yet (but see Section 22.6 if you’re concerned).

Remember this: The simple mosaic recipe can result in serious loop
closure problems. This occurs because registering images only along the
edges of a tree omits many important pairs of images. Bundle adjustment
improves the registration by registering all pairs, usually starting with a
mosaic built using the simple recipe.

15.2 REGISTERING IMAGES WITH MORE THAN TRANSLATION

Building mosaics is one reason to register two images, but it isn’t the only one.
Another application is change detection. You have (say) an aerial image of a suburb
taken ten years ago, and another taken recently. One way to know what has changed
is to register the images and look at the differences. This line of reasoning is widely
useful. For example, you have a x-ray image of a breast at a previous exam and now
– looking at the differences might reveal changes that indicate disease or the progress
of disease. Yet another application registers different types of image. You might
have a thermal image of the suburb and a color image of that suburb: registering
them allows you to describe imaged points in more detail – how hot they are and
what color they are. This recipe is particularly useful in medical applications,
where it is common to have two images of some structure obtained using different
procedures.

However, most applications require that you deal with more interesting reg-
istration problems. Many camera movements cannot be modelled by a pure trans-
lation of the image. There might be rotation or scaling or (as Section 22.6 shows)
a projective transformation. It is natural to consider a mosaic that uses a richer
family of transformations. However, the current registration procedure – compute
the cost function at many different translations, and choose the best – becomes un-
wieldy when there are more transformation parameters to deal with. The number of
objective function values needed grows exponentially in the number of parameters
in the transformation.

Assume you have a set of N points in one image and you know the correspond-
ing N points in a second image. Determining a transformation that registers the
two images is now straightforward, if fiddly. Solutions to this case (Section 15.3)
provide building blocks for more complicated cases. The correspondence comes
from interest points.

Section 15.3 Weighted Least Squares Registration with Exact Correspondences 277

Procedure: 15.2 Master Recipe: Registering Two Images with Interest
Points

Given two images A and B you wish to register, find interest points in
first and second image.
Find corresponding pairs as follows. For each interest point in A
(write the feature vector of the i’th as ai), find the interest point in B
whose feature vector is most similar. Assume that this is the j’th point
in B. Now check the matching is symmetric – if bj is closest to ai in
B, then ai should be the closest point in A to bj . Finally, check the
distance between matched feature vectors is small. Pairs which are best
matches from A to B and from B to A and where the distance is small
are likely to be corresponding points if the distance threshold is small
enough.
Now compute a transformation from the corresponding pairs of points.

If all the correspondences are right (which happens), then the procedures of
Section 15.3 are good enough. But if some of the correspondences are wrong, you
need to procedures of Chapter ??.

Remember this: Register two images by finding interest points, estab-
lishing correspondences, then using an appropriate registration algorithm
on the correspondences.

15.3 WEIGHTED LEAST SQUARES REGISTRATION WITH EXACT CORRESPONDENCES

The core engine of any registration solution is weighted least squares where the
correspondences are known. How one uses this engine depends somewhat on the
problem. Finding a solution is always an optimization problem, but the details of
this problem differ from transformation to transformation.

15.3.1 Affine Transformations

For an affine transformation, T (y) isMy+ t. Further, there is a transformation T
so that T (yi) is close to xi for each i. Write ri for the vector from the transformed
yi to xi, so

ri(M, t) = (xi − (Myi + t))

and

Cu(M, t) = (1/N)
∑
i

rTi ri

278 Chapter 15 Registration and Overlapping Images

should be small. Because it will be useful later, assume that there is a weight wi

for each pair and work with

C(M, t) =
∑
i

wir
T
i ri

where wi = 1/N if points all have the same weight. The gradient of this cost with
respect to t is

−2
∑
i

wi (xi −Myi − t)

which vanishes at the solution, so that

t =

∑
i

wixi −M
∑

wiyi∑
i wi

.

Now if
∑

i wixi =
∑

i wiMyi = M(
∑

i wiyi), then t = 0. An easy way to
achieve t = 0 is to ensure

∑
i wixi = 0 and

∑
i wiyi = 0. Write

cx =

∑
i wixi∑
i wi

for the center of gravity of the observations (etc.) Now form

ui = xi − cx and vi = yi − cy

and if you use U and V, then the translation will be zero and must only estimate
M. Further, the estimate M̂ of this matrix yields that the translation from the
original reference points to the original observations is cx − M̂cy.

FindingM now reduces to minimizing∑
i

wi (ui −Mvi)
T
(ui −Mvi)

as a function ofM. The natural procedure – take a derivative and set to zero, and
obtain a linear system (exercises) – works fine, but it is helpful to apply some
compact and decorative notation.

Write W = diag ([w1, . . . , wN]), U =
[
uT
1 , . . . ,u

T
N

]
(and so on). Recall all

vectors are column vectors, so U is N × d. You should check that the objective can
be rewritten as

Tr
(
W(U − VMT)(U − VMT)T

)
.

exercises Now the trace is linear; UTWU is constant;

Tr (A) = Tr
(
AT
)
;

and

Tr (ABC) = Tr (BCA) = Tr (CAB)

Section 15.3 Weighted Least Squares Registration with Exact Correspondences 279

(check this by writing it out, and remember it; it’s occasionally quite useful). This
means the cost is equivalent to

Tr
(
−2UTWVMT

)
+ Tr

(
MVTWVMT

)
which will be minimized when

MVTWV = UTWV

(which you should check exercises). The exercises establish cases where VTWV
will have full rank, and in these – the usual – casesM is easily obtained exercises
. Notice this derivation works whatever the dimension of the points.

Procedure: 15.3 Weighted Least Squares for Affine Transformations

You have N correspondences (xi,yi) each with a weight wi and wish
to find an affine transformation (M, translation t). by minimizing∑

i

wi(xi −Myi − t)T (xi −Myi − t)

Write

cx =

∑
i wixi∑
i wi

cy =

∑
i wiyi∑
i wi

ui = xi − cx

vi = yi − cy

Write U =
[
uT
1 ,u

T
2 , . . . ,u

T
N

]
(etc) and W = diag(w1, . . . , wN). The

least squares estimate M̂ satisfies the linear system

M̂VTWV = UTWV

and the least squares estimate t̂ of t is

t̂ = cx − M̂cy

15.3.2 Euclidean Motion

One encounters affine transformations relatively seldom in practice, though they
do occur. Much more interesting is the case where the transformation is Euclidean.
The least squares solution above isn’t good enough, because theM obtained that
way won’t be a rotation matrix. But a neat trick yields a least squares solution for
a rotation matrix.

280 Chapter 15 Registration and Overlapping Images

0.05 0.3

FIGURE 15.7: Least squares registration is quite well-behaved under even quite pro-
nounced gaussian noise. In each figure, the 40 green (downward pointing) trian-
gles, which lie on a rectangle one unit high and three units wide are subject to a
Euclidean transformation, then noise is added, to obtain the red circles. I then used
least squares to estimate a Euclidean transformation using corresponding green and
red points, and applied this transformation to register the red points to the green,
yielding the purple (upward pointing) triangles. I have joined each registered point
to the original with a dark line. The thin dark rectangle shows the result of the
estimated transformation applied to the true rectangle underlying the red points.
The green triangles lie on it if the transformation is correctly estimated. Left: the
noise is isotropic Gaussian noise, with standard deviation 0.05 (so 1/20 of the rect-
angle height); right, the standard deviation is 0.3 (or about 1/3 of the rectangle
height). In each case, the parameters estimated by least squares are close to the
transformation actually applied.

As in the previous section, subtract the centers of gravity to get the transla-
tion, and work with ui and vi. The problem is now to choose R to minimize∑

i

wi(ui −Rvi)
T (ui −Rvi).

This can be done in closed form (a fact you should memorize, because it is extremely
useful). The objective function can be transformed to∑

i

wi(ui −Rvi)
T (ui −Rvi) = Tr

(
W(U − VRT)(U − VR)T

)
= Tr

(
−2VTWUR

)
+K

(because RTR = I)

Here K is a constant that doesn’t involve R and so is of no interest. Now compute
an SVD of VTWU to obtain VTWU = AΣBT where A, B are orthonormal, and S is
diagonal (Section 22.6 if you’re not sure). Now BTRA is orthonormal, and we must

Section 15.4 Projective Transformations 281

maximize Tr
(
BTRAS

)
, meaning BTRA = I (check this if you’re not certain), and

so R = BAT .

Procedure: 15.4 Weighted Least Squares for Euclidean Transformations

We have N reference points xi whose location is measured in the agent’s
coordinate system. Each corresponds to a point in the world coordinate
system with known coordinates yi, and the change of coordinates is a
Euclidean transformation (rotation R, translation t). For each (xi,yi)
pair, we have a weight wi. We wish to minimize∑

i

wi(xi −Ryi − t)T (xi −Ryi − t) (15.1)

Write

cx =

∑
i wixi∑
i wi

cy =

∑
i wiyi∑
i wi

ui = xi − cx

vi = yi − cy

Write U =
[
uT
1 ,u

T
2 , . . . ,u

T
N

]
(etc); W = diag(w1, . . . , wN); and

SVD(UTWV) =
[
A,Σ,BT

]
. The least squares estimate R̂ is

R̂ = BAT

and the least squares estimate t̂ of t is

t̂ = cx − R̂cy

15.4 PROJECTIVE TRANSFORMATIONS

Recall from Section 4.1 that a projective transformation of an image is given by a
3× 3 matrixM that has full rank. The transformation can be written x1

x2

 =


m11y1 +m12y2 +m13
m31y1 +m32y2 +m33

m21y1 +m22y2 +m23
m31y1 +m32yy +m33

 =M(y).

The reason to put up with the relative complexity of this model is that it explains
what happens to a pattern on a plane when the pattern is viewed in a pinhole
camera (Section 15.4.1).

282 Chapter 15 Registration and Overlapping Images

X

Z

(X, Y, Z)=s u+t v+ w

(fX/Z, fY/Z, f)

Y

w

u

v

FIGURE 15.8: The mapping from a pattern on a plane to a perspective image, or
from a perspective image to a pattern on a plane, is a homography. The 3D points
can be written su + tv + w, where each point on the plane has parameters (s, t).
The derivation follows in the main text.

Fitting a projective transformation to a set of points isn’t (much) affected
by dimension. Higher dimensions follow the pattern for the transformation. A
projective transformation in d dimensions is given by a d+1×d+1 matrixM that
has full rank. The transformation is now

 x1
. . .
xd

 =



m11y1 + . . .+m1dyd +m1(d+1)

m(d+1)1y1 + . . .+m(d+1)dyd +m(d+1)(d+1)

. . .

md1y1 + . . .+mddyd +md(d+1)

m(d+1)1y1 + . . .+m(d+1)dyd +m(d+1)(d+1)

 =M(y).

15.4.1 Homographies: A Camera Viewing a Plane

A pinhole camera views a pattern on a plane (Figure 15.8). The mapping from
the pattern on the plane, in the plane’s coordinate system, to the pattern in the
image, in the image coordinate system, is a projective transformation. This means

Section 15.4 Projective Transformations 283

the mapping from the image to the plane is also a projective transformation. If
you know some information (for example, where the plane is with respect to the
camera; the locations of some reference points on the plane), you can reconstruct
the pattern in a frontal view. This is extremely useful in practice.

The coordinate system on the plane is (s, t)T , and the points on the plane in
3D are parametrized by su + tv +w, where u, v and w are vectors in 3D and u,
v are not parallel. Recall from Section ?? the geometric model that the pinhole
camera maps the point (X,Y, Z)T in 3D to the point (fX/Z, fY/Z)T on the image
plane. In turn, the point (s, t)T on the plane maps to

[
f su1+tv1+w1

su3+tv3+w3

f su2+tv2+w2

su3+tv3+w3

]

in the image. This means the map from plane to image is a projective transforma-
tion, as is the map from image to plane. In an extremely common case, you know
the locations of four or more points on the plane and the location of those points
in the image, and must reconstruct the pattern on the plane from the pattern on
the image. You do so by estimating a projective transformation.

15.4.2 Registering with a Projective Transformation

The residual error between xi andM(yi) is

ri = xi −M(yi).

A weighted least squares solution now solves

∑
i

wir
T
i ri.

The main issue here is that M(yi) is not a linear function of the components of
M. Numerical minimization is required. You should use a second order method
(Levenberg-Marquardt is favored exercises). Experience teaches that this op-
timization is not well behaved without a strong start point.

284 Chapter 15 Registration and Overlapping Images

Procedure: 15.5 Estimating a Projective Transformation from Data

Given N known source points yi = (yi,1, . . . , yi,d) in affine coordi-
nates and N corresponding target points xi with measured locations
(xi,1, . . . , xi,d) and weights wi, obtain the projective transformationM
with i, j’th element mij mapping source to target by minimizing:∑

i

wiξ
T
i ξi (15.2)

where

ξi =


xi,1 −

m11yi,1 + . . .+m1dyi,d +m1(d+1)

m(d+1)1xi,1 + . . .+m(d+1)dxi,d +m(d+1)(d+1)

. . .

xi,d −
md1yi,1 + . . .+mddyi,d +md(d+1)

m(d+1)1xi,1 + . . .+m(d+1)dxi,d +m(d+1)(d+1)

 (15.3)

using a second-order method (a quasi-Newton method like Levenberg-
Marquardt is favored). Use a start point obtained with the procedure
below.

There is an easy construction for a good start point. For a pair of known points
xi and yi, you can cross multiply the equations for the projective transformation
to get

 0
. . .
0

 =



(
m11y1,i + . . .+m1dyd,i +m1(d+1)

)
−

x1,i
(
m(d+1)1y1,i + . . .+m(d+1)dyd,i +m(d+1)(d+1)

)
. . .(

md1y1,i + . . .+mddyd,i +md(d+1)

)
−

xd,i
(
m(d+1)1y1,i + . . .+m(d+1)dyd,i +m(d+1)(d+1)

)

 = Dm.

Here the mij are unknown, so this is a set of d homogenous linear equations in
(d+ 1)× (d+ 1) unknowns. I have arranged these unknowns into a vector and the
coefficients into a matrix D for convenience. If you have (d + 2) different (x,y)
pairs that meet conditions exercises , you can solve the system up to scale. But
the scale of the solution does not affect the transformation it implements, so you
have a start point.

If you have more than (d + 2) pairs, you can use least squares. Because
the equations are homogenous, you must constrain the scale of m, so minimize
mTDTDm subject to mTm = 1. exercises The resulting estimate of M has
a good reputation as a start point for a full optimization. It is straightforward
to incorporate weights on the points into this estimate. If the weights come from
IRLS, then you need this construction only at the start. For every other iteration,
the previous iteration will supply an acceptable start point as well as weights.

Section 15.4 Projective Transformations 285

Procedure: 15.6 Obtaining a start point for fitting a projective trans-
formation with least squares

Write D for
y1,1 y2,1 . . . 1 0 . . . 0 x1,1y1,1 . . . x1,1yd,1 1
y1,1 y2,1 . . . 1 0 . . . 0 x2,1y1,1 . . . x2,1yd,1 1
. . .
y1,1 y2,1 . . . 1 0 . . . 0 xd,1y1,1 . . . xd,1yd,1 1
. . .
y1,N y2,N . . . 1 0 . . . 0 xd,Ny1,N . . . xd,Nyd,N 1


and m for 

m11

m12

. . .
m1d

m21

. . .
md,(d+1)

m(d+1),1

. . .
m(d+1),d

m(d+1),(d+1)


Set up the set of homogenous linear equations

0 = Dm.

Write W = diag (wi), and obtain m̂, the eigenvector of DTWD corre-
sponding to the smallest eigenvalue. This is your start point.

There is one important question to attend to here. The coordinate system in
which the points are presented can have effects. It is often a good idea to translate
and scale both xi and yi so that coordinates are all in the range [−1, 1] and each
has a center of gravity at 0. This avoids an optimization problem with some large
terms and some small terms, and often results in a better fit. Once you have the
estimated transformation, you can apply translations and scales as appropriate to
estimate the transformation between the original coordinate systems exercises .

15.4.3 Probabilistic Interpretations and Variants

If the weights are uniform, then solving∑
i

wir
T
i ri.

is equivalent to assuming that the error in point estimates is isotropic normal, and
maximizing the likelihood of the error. This equivalence is sometimes helpful. If

286 Chapter 15 Registration and Overlapping Images

you know, for example, that errors in some directions are more likely than errors
in others, it can be a good idea to use an estimate of the covariance between errors
Σ, so the criterion becomes ∑

i

wir
T
i Σ

−1ri.

The modification to each procedure is straightforward (exercises).

Section 15.5 You should 287

15.5 YOU SHOULD

15.5.1 remember these definitions:

15.5.2 remember these facts:

Overview of mosaics . 273
Coarse-to-fine search and interpolation improve translation estimates 275
Bundle adjustment can improve loop closure 276
Register images by registering corresponding interest points 277

15.5.3 remember these procedures:

Building a Mosaic as a Simple Tree 270
Master Recipe: Registering Two Images with Interest Points 277
Weighted Least Squares for Affine Transformations 279
Weighted Least Squares for Euclidean Transformations 281
Estimating a Projective Transformation from Data 284
Obtaining a start point for fitting a projective transformation with

least squares . 285

15.5.4 use these resources:

15.5.5 be able to:

• Register two images using interest points when correspondences are accurate.

• Construct a simple mosaic by registering images.

288 Chapter 15 Registration and Overlapping Images

EXERCISES

QUICK CHECKS

15.1. Section 15.1.1 has: “Notice that there is no point in translating both images
(exercises).” Explain.

15.2. Procedure 15.1 produces a tree. Explain.
15.3. Why would Procedure 15.1 not produce a forest? Does a forest make sense?
15.4. Sketch the tree of Figure 15.2.
15.5. Section 15.1.1 has: “You could test this, for example, by comparing very

heavily downsampled versions of the images.” How would this work?
15.6. Section 15.3.1 says: “ Finding M now reduces to minimizing∑

i

wi (ui −Mvi)
T (ui −Mvi)

as a function of M. The natural procedure – take a derivative and set to zero,
and obtain a linear system – works fine” What is the linear system you would
solve to find M?

15.7. Check that
Tr (ABC) = Tr (BCA) = Tr (CAB)

for 1×1 matrices; now check this for 2×2 matrices by writing the whole thing
out.

15.8. You have a dataset of N points yi. Write the center of gravity for these points
as c. Check the center of gravity of the points Myi + t is Mc+ t.

15.9. Section 15.4.2 has: “you can apply translations and scales as appropriate to es-
timate the transformation between the original coordinate systems.” Explain.

LONGER PROBLEMS

15.10. This exercise uses the notation of Section 15.3.1.
(a) Check that ∑

i

wi (ui −Mvi)
T (ui −Mvi)

is equivalent to

Tr
(
−2UTWVMT

)
+ Tr

(
MVTWVMT

)
(b) Now show

Tr
(
−2UTWVMT

)
+ Tr

(
MVTWVMT

)
will be minimized when

MVTWV = UTWV.

15.11. This exercise uses the notation of Section 15.3.1, and establishes cases where
VTWV has full rank. Assume points have dimension d and there are N > d
points.
(a) Show that, if the N points vi contain a set of d points that are linearly

independent, then the only a such that Va = 0 is 0.

Section 15.5 You should 289

(b) Assume all diagonal elements of W are greater than zero. Use the result
of the previous subexercise to show that, if the N points vi contain a set
of d points that are linearly independent, then VTWV has full rank.

(c) Show that, if the N points vi do not contain a set of d points that are
linearly independent, then VTWV does not have full rank, whatever W.

(d) Deduce a condition for VTWV to have full rank.
15.12. This exercise uses the notation of Section 15.4.2. Assume you have N ≥ d+1

different (x,y) pairs, and must find a start point.
(a) Show that the expression for D given in Procedure 15.6 is correct.
(b) Show that minimizing mTDTWDm does not produce a solution.
(c) Show that the solutions to minimizing mTDTWDm subject to mTm = 1

solve
DTWDm = λm.

Which of the (d+ 1)2 eigenvectors is the solution you want?
(d) Why should you not try to minimize mTDTWDm subject to 1Tm = 0?

PROGRAMMING EXERCISES

15.13. Obtain an image of a plane with a pattern on it, where the pattern contains
something you know to be a grid of square checks (I used an image search,
with the query “perspective art” and found lots). Usually, there will be other
stuff in the image; if this bothers you, mask it off by hand. Ensure you have
more than 5 checks on the piece – if you don’t, just find another image.
(a) Choose one check. Find the four vertices of this check in the image. Com-

pute the homography that rectifies these four vertices to a unit square,
and apply it to the rest of the pixels on the plane. You will likely observe
that checks far from the one you used are not quite square. Why is this
happening?

(b) Now compute the homography that rectifies these at least three of the
checks to the appropriate points on a grid of unit squares. Apply it to the
rest of the pixels on the plane. Are the other checks – the ones you did
not use – better?

(c) Obtain a drawing – your choice – and place four equal dark squares cut
from black paper at each corner. These squares should sit on the corner of
a grid. Take a picture of this, ensuring the assembly is flat and that you
get visible perspective distortions in the picture (for example, the squares
might no longer look square). Now use the results of the previous exercise
to rectify the picture. How good is the rectification? what could you use
to improve it?

