CHAPTER 16

Registration, Correspondence and
Outliers

The general point registration problem looks like this. You have two point
clouds — two sets of points with no other structure. The locations of the interest
points in an image form a 2D point cloud, but point clouds can have any dimension.
Write P for a point cloud whose ¢’th point is p; and so on. Write X and ) for
the two point clouds, T for a transformation, 7 (y) for the transformed version of
the point y, and 7()) for the transformed version of the point cloud. Further, you
know that there is a transformation 7 so that 7()) is “close” to X'. You must find
this transformation.

Section 15.3 dealt with the case where for each point in ) there is a unique
corresponding point in X and for each point in A" there is a unique corresponding
point in Y and you know which point corresponds to which. Here the point clouds
must have the same number of points in them.

In most cases, you need to estimate correspondences from the data. Corre-
spondences that are wrong tend to be badly wrong, creating a robustness issue.
Section 16.1 shows how to deal with this using IRLS (slightly adapted from Sec-
tion 14.2.2) and RANSAC (slightly adapted from Section 14.3). For some kinds of
data, it is better to estimate correspondences from an estimate of the transforma-
tion (Section 16.2).

16.1 ROBUSTNESS, IRLS AND RANSAC

16.1.1

Correspondences are (x,y) pairs. Good correspondences are ones where T (y) is
close to x for the true transformation 7. Errors are ones where 7 (y) is far from x for
the true transformation 7. In the case of image registration, some correspondences
are likely to be wrong, but you should expect a relatively large fraction of good
correspondences. This is a robustness issue (Figure 16.1), which IRLS or RANSAC
can deal with as long as there are not too many bad correspondences.

IRLS for Registration

The IRLS recipe can be applied with very little modification to registration. Choose
a robust cost function from Section 14.2.1 or elsewhere. Recall this cost applies to
the residual. Write 0 for the parameters of the transformation 7y, and the residual
is now

Fsi,yis8) = /(s — Taly ) (s — Talya).
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FIGURE 16.1: Significant registration errors can be caused by small numbers of out-
liers. This figure uses the same markers as 15.7. In this case, rather than adding
gaussian noise to the red points, I have replaced five of them with points drawn
uniformly and at random from a box surrounding the red points. The outliers are
marked with a red x. All others are in their transformed location and have not had

noise added. The estimated transformation has

been significantly affected — note

how the fine dark rectangle doesn’t pass through the green triangles.

The square root ensures that minimizing the least squares criterion is equivalent to

(1/2) Z(T(Xu vi,0))%.

i
For any given 6, the weights are now
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As Figure 16.3 shows, IRLS does very well for moderate numbers of outliers, but
performance is degraded when there are too many. The procedure is important, so

I have put it in a box.
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FIGURE 16.2: IRLS is effective at controlling registration errors caused by small
numbers of outliers, but can be overwhelmed by large numbers of outliers.
figure uses the same markers as 15.7. As in Figure 16.1, I have replaced some red
points with points drawn uniformly and at random from a box surrounding the red
points, marked with a red z. I estimated the transformation with IRLS. On the left,
with a moderate fraction of outliers (5 in 40 points), the transformation estimate
is very good; on the right, where most points are outliers (30 in 40 points), the

estimate is much weaker.
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Procedure: 16.1 Fitting a Transformation using Iteratively Reweighted
Least Squares

This procedure takes a set of N putatively corresponding point pairs
(x4, y:) and obtains an affine, Euclidean or projective transformation Ty
that registers the pairs while discounting the effect of some correspon-
dence errors. Choose a robust cost function p(u; o) from Section 14.2.1
or somewhere else.

Initialize with an initial set of parameters §(1). One strategy is to
choose a small subset of S correspondences at random, then fit a
transformation with weights 1/S using the appropriate weighted least
squares procedure. Compute

rl(l) = r(xi,yi,ﬁ(l)) = \/(Xi = To(yi))™ (xi — To(yi))

for each correspondence. Obtain an initial scale o(!) using either appli-
cation considerations or

oM =1.4826 median; |r£1)| .

Compute
dp
1) _ du

where the derivative is evaluated at u = 7“2(1) and o).
Now use iterate three steps:

Estimate the transformation using the appropriate

weighted least squares procedure to obtain the new set of
( (r)

parameters 6"+ and riTH) from w,

Estimate the scale, possibly using
o™t = 1.4826 median; [r{" Y] .

Alternatively, use a fixed scale obtained using application
considerations.
Re-estimate weights using
dp
(r+1) _ du
Yi T

T3

where the derivative is evaluated at u = rfrﬂ) and o™+,

Terminate iterations when either the change in the transformation is
below a threshold or there have been too many.
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FIGURE 16.3: RANSAC can be effective at controlling registration errors caused by
outliers. This figure uses the same markers as 15.7. As in Figure 16.1, I have
replaced some red points with points drawn uniformly and at random from a box
surrounding the red points, marked with a red x. I estimated the transformation
with RANSAC. Here most points are outliers (30 in 40 points) (compare Figure
16.3) and the estimate is very good.

RANSAC

Adapting RANSAC to registration problems is mostly straightforward when there
are relatively few outliers. A line is completely specified by two points (which
is why Procedure 14.4 used two random samples). Different transformations re-
quire different numbers of correspondences, however. An affine transformation in
d dimensions is exactly specified by d + 1 correspondences (exercises ) and a
projective transformation in d dimensions is exactly specified by d + 2 correspon-
dences. Euclidean transformations are more tricky. For example, in the plane, one
correspondence is not enough to specify a Euclidean transformation (you can rotate
about a point) and there are many sets of two correspondences that can’t be regis-
tered exactly with a Euclidean transformation (it doesn’t change lengths). Use two
correspondences for plane Euclidean transformations, and three for 3D Euclidean
transformations.
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Procedure: 16.2 Registration Using RANSAC

This procedure takes a set of N putative correspondences (x;,y;) and
obtains an estimate of the registration.

Start by choosing: the number of correspondences required to deter-
mine a transformation, m; the number of iterations required, k; the
threshold used to identify a correspondence that is good, t; the number
of good correspondences required to assert a model fits well, d. Set up
a collection of good fits, currently empty.

Iterate until £ iterations have occurred:

Draw a sample of n distinct correspondences from the data
uniformly and at random, and determine the transformation
implied by those correspondences. If the transformation is
acceptable:

For each correspondence outside the sample, if the
length of the residual is less than ¢, the correspon-
dence is good.

If there are d or more good correspondences then
there is a good fit. Refit the transformation using
all these correspondences and a robust loss (likely
using IRLS). Add the result to a collection of good
fits.

Use the best fit from the collection of good fits, using the fitting error
as a criterion.

Choosing n: Use: d + 1 correspondences for an affine transformation
in d dimensions; d + 2 for a projective transformation in d dimensions;
two correspondences for plane Euclidean transformations; and three for
3D Euclidean transformations.

Determining the transformation: Use the relevant weighted least
squares procedure, with w; = 1/n. For affine transformations and Eu-
clidean transformations, check the eigenvalues of VWVT'; if the smallest
eigenvalue is too small, the solution will not be acceptable because of an
accidental alignment between correspondences. For Euclidean transfor-
mations, check the eigenvalues of UTWYV); if the smallest eigenvalue is
too small, the solution will not be acceptable because of an accidental
alignment between correspondences. For projective transformations, ei-
ther check the eigenvalues of the hessian of the objective at the solution
for a small eigenvalue (best test), or check the eigenvalues of M for a
large value (easiest); either is an indicator of an unacceptable solution
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ICP, round: 0 ICP, round: 15

FIGURE 16.4: ICP can converge quickly to the right transformation. The green
(upward pointing, to the right) u shape must be transformed to lie on the red
(sideways pointing, to the left) u shape. The running shape is purple. Left shows
the initial transformation. Right has been registered by 15 iterations of ICP — you
can see only two u-shapes, because the running points are now precisely registered
to the target points.

16.2 UNKNOWN CORRESPONDENCE

In cases like that of registering LIDAR point clouds to one another, or meshes to
LIDAR point clouds, there isn’t much — or, often, any — information at each point
that you can use to match. Just forming X x Y — taking every pair of points, one
from X and one from ) — and hoping that either IRLS will be able to tell good
from bad correspondences is very likely to fail. IRLS fails because there are far too
many bad correspondences and far too many local minima; you are highly unlikely
to be lucky enough to find a good solution.

Relying on RANSAC to determine correspondences is unwise. This doesn’t
contradict the previous section: there, one of the points in a correspondence was
replaced with an outlier, but the fraction of correspondences that were so affected
was relatively small (0.75 in one example). RANSAC can require very large numbers
of samples when the fraction of outliers is high. Say X has N points and ) has
M points, you want to compute a FEuclidean transformation, and the only thing
you know about the correspondences is that they are one to one. Then at most
min(N, M) correspondences can be good. This means that in the best case you will
need to look at of the order of

v
[max (M, N)]*

samples to see one set of three good samples. If there are fewer good correspon-
dences, the number of samples required will get worse. Anything you can do to
reduce the number of bad correspondences would be helpful.
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Application: Registering 3D Point Clouds

LIDAR sensors query depth at a grid of sampling directions which usually lie in
a cylinder around the sensor, and report (z,y,z) points. The sensor does not
usually report anything else about each sample, so the point cloud is a fairly good
abstraction here. You have a vehicle with a LIDAR sensor, and drive it around
an indoor area taking LIDAR measurements. You estimate the location of the car
each time you measure by looking at, say, wheel revolutions or GPS. This gives
you a fair estimate of the registration between measurements, and want to improve
this registration to build a LIDAR map of the area. This case is rather different to
image registration because the points will have no associated descriptions so you
can’t establish correspondence using descriptors. However, you have good initial
estimates of the registration.

Once you have the map of the area, the car moves to some unknown location
and takes a LIDAR measurement. You can tell where the car is by registering the
LIDAR measurement to the map. Again, you can’t establish correspondence using
descriptors. This version of the registration problem has some interesting problems
that come from sampling issues (below).

Application: Registering Meshes to Point Clouds

Another standard problem is to find instances of a CAD model in data from a
LIDAR sensor. For example, you might have a CAD model of a car, and want to
find if that car appears in the LIDAR data and where it appears. Further, CAD
models can always be reduced to triangle meshes. A natural procedure is to sample
points on the mesh model to get a point cloud, then treat the problem as a point
cloud registration problem. Again, you can’t get descriptions of points that are
good enough to estimate correspondence accurately. There are quite likely to be
many bad correspondences, because the LIDAR data has many points that don’t
lie on the car.

Iterated Closest Points or ICP

There is an alternative strategy that applies if you have a reasonable estimate of
the initial transformation. We have N reference points y; and M observed points
x;. For the moment, we will assume that all weights w; are 1. A straightforward,
and very effective, recipe for registering the points is iterative closest points or ICP.
The key insight here is that, if the transformation is very close to the identity,
then the y.(;) that corresponds to x; should be the closest reference point to x;.
This finding the closest reference point to each measurement and computing the
transformation using that correspondence. But the transformation might not be
close to the identity, and so the correspondences might change. We could repeat
the process until they stop changing.

Formally, start with a transformation estimate 77, a set of ml(-l) = TW(yy)
(the running points) and then repeat three steps:

e Estimate correspondences using the transformation estimate. Then, for

each x;, we find the closest m(™ (say m&")); then x; corresponds to mg(?).
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FIGURE 16.5: Some initial transformations can result in slow convergence of ICP.
The green (upward pointing, to the right) u shape must be transformed to lie on the
red (sideways pointing, to the left) u shape. The running shape is purple. Top
left shows the initial transformation; top right, the result after 15 iterations of
ICP; bottom left, after 30 iterations; and bottom right after 50 iterations. In
the last figure, you can see only two u-shapes, because the running points are now
precisely registered to the target points.

¢ Estimate a transformation 7 ("1 using the corresponding pairs.
e Update the running points by mapping mgn) to T("H)(mgn)) and

These steps are repeated until convergence, which can be tested by checking if
the correspondences don’t change or if 7("*1 is very similar to the identity. The
required transformation is then

T+ o7 o T (16.1)

There are a number of ways in which this very useful and very general recipe
can be adapted. First, if there is any description of the points available, it can be
used to cut down on correspondences (so, for example, we match only red points
to red points, green points to green points, and so on). Second, finding an exact
nearest neighbor in a large point cloud is hard and slow, and we might need to
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FIGURE 16.6: ICP can converge to the wrong answer, typically when the initial trans-
formation is very different from the right answer. The green (upward pointing, to
the right) u shape must be transformed to lie on the red (sideways pointing, to the
left) u shape. The running shape is purple. Top left shows the initial transfor-
mation; top right, the result after 15 iterations of ICP; bottom left, after 30
iterations; and bottom right after 50 iterations. You can still see three u-shapes,
because the running points are incorrectly registered to the target points.

subsample the point clouds or pass to approximate nearest neighbors (more details
below). Third, points that are very far from the nearest neighbor might cause
problems, and we might omit them (again, more details below).

ICP and Sampling

The ICP recipe becomes difficult to apply to point clouds when M or N are very
large. One obvious strategy to control this problem applies when something else —
say, a color measurement — is known about each point. For example, we might get
such data by using a range camera aligned with a conventional camera, so that every
point in the depth map comes with a color. When extra information is available,
one searches only compatible pairs for correspondences. As another example, you
(") and each y; by fitting a plane to it and a few

might estimate a normal at each m;
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FIGURE 16.7: If the two shapes that have been sampled differently, ICP can produce
poor results. The green (upward pointing, to the right) u shape must be transformed
to lie on the red (sideways pointing, to the left) u shape. The initial transformation
is shown by the purple shape. The ICP result is shown in orange. The two offset
cases are successful; the others are not.

nearby neighbors (Section ??). Now assuming that the running points are quite
like the reference points, use only correspondences where the normals are nearly
parallel. Test this by testing whether the dot-product between normals is large
enough.

Large point clouds are fairly common in autonomous vehicle applications. For
example, the measurements might be LIDAR measurements of some geometry. It
is quite usual now to represent that geometry with another, perhaps enormous,
point cloud, which you could think of as a map. Registration would then tell the
vehicle where it was in the map. Notice that in this application, there is unlikely
to be a measurement that exactly corresponds to each reference point. Instead,
when the registration is correct, every x; is very close to some transformed y;, so
a least squares estimate is entirely justified. In cases like this, one can subsample
the reference point cloud, the measurement point cloud, or both.

The sampling procedure depends on the application, and can have significant
effects. For example, imagine you are working with LIDAR on a vehicle which
is currently in an open space next to a wall (Figure 20.1). There will be many
returns from the wall, and likely few from the open space. Uniformly sampled
measurements would still have many returns from the wall, and few from the open
space. This could bias the estimate of the vehicle’s pose (Figure 16.7). A better
alternative would be to build a stratified sample by breaking the space around the
vehicle into blocks of fixed size, then choosing uniformly at random a fixed number
of samples in each block. In this scheme, the wall would be undersampled, and the
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FIGURE 16.8: On the left a map of a simple arena, represented as a point cloud.
Such a map could be obtained by registering LIDAR measurements to one another.
A LIDAR or depth sensor produces measurements in the sensor’s coordinate sys-
tem, and registering these measurements to the map will reveal where the sensor is.
However, the sensor may measure points more densely at some positions than at
others. Left shows such a measurement; note the heavy sampling of points near the
corner and the light sampling on the edges. This can bias the registration, because
the large number of points near the corner mean that the registration error consists
mostly of errors from these points. It can also create significant computational prob-
lems, because finding the closest points will become slower as the number of points
increases. A stratified sample of the measurements (right) is obtained by dividing
the plane (in this case) into cells of equal area (usually a grid), then resampling the
measurements at random so there are no more than a fixed number of samples in
each box. Such a sample can both reduce bias and improve the speed of registration.
TODO: Source, Credit, Permission

open space would be oversampled, somewhat resolving the bias.

Another stratified sampling strategy is to ensure that surface normal direc-
tions are evenly represented in the samples. Make an estimate of a surface normal
at each point (for example, by fitting a plane to the point and some of its nearest
neighbors). Now break the unit sphere, which encodes the surface normals, into
even cells, and sample the points so that each cell has the same number of samples.
This approach is particularly useful when we are trying to register flat surfaces with
small relief details on them (Figure ?7).

Beyond ICP

ICP minimizes a cost function

S| I - T | = E B (16.2)
3 K3

by finding the corresponding pairs (the x; that corresponds to y;), then minimiz-
ing, then repeating. This is an easy way to exploit the closed form solution for
T when correspondence is known, but it isn’t the only way. The min means the
objective function isn’t differentiable everywhere (exercises), but it is continuous,
and it is differentiable at most locations. This is usually a sign that straightfor-
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(a) (b)

(c) (d)

FIGURE 16.9: The sample of points used in registration can be biased in useful ways.
For example, (a) shows a cross section of a flat surface with a small groove (above)
which needs to be registered to a similar surface (below ). If point samples are drawn
on the surface at random, then there will be few samples in the groove; the dashed
lines indicate correspondences. In turn, the registration will be poor, because the
surfaces can slide on one another. In (b), the samples have been drawn so that
normal directions are evenly represented in the samples. Notice this means more
samples concentrated in the groove, and fewer on the flat part. As a result, the
surface is less free to slide, and the registration improves.

TODO: what do ¢ and d show? TODO: Source, Credit, Permission

ward optimization methods can be applied successfully, which is true here. The
Levenberg-Marquardt algorithm (Section ??) works particularly well here, because
for a particular correspondence, the cost is a least squares cost, and because it
doesn’t require second derivatives. Notice that, to obtain the gradient of E;(T)

with respect to T, you need to know which x; is closest to T (y;), so you still need
to find the nearest neighbor.
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16.3 YOU SHOULD

16.3.1
16.3.2
16.3.3

16.3.4
16.35

remember these definitions:

remember these facts:

remember these procedures:
Fitting a Transformation using Iteratively Reweighted Least Squares 294
Registration Using RANSAC . . .. ... ... ... .. ....... 295

use these resources:

be able to:

e Apply IRLS and RANSAC to registration problems.

e Apply ICP to registration problems.
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EXERCISES

QUICK CHECKS
16.1.

16.2.
16.3.
16.4.
16.5.
16.6.
16.7.

16.8.

16.9.

In the lead, I say: “ Correspondences that are wrong tend to be badly wrong”.
Why is this the case?

Check that I have correctly mapped IRLS (Section 14.2.2) onto registration in
Section 16.1.

Check that I have correctly mapped RANSAC (Section 14.3) onto registration
in Section 16.1.2.

Show how an affine transformation in d dimensions is exactly specified by d+1
correspondences (start with d = 1).

Produce a set of two correspondences that can’t be exactly registered with a
Euclidean transformation in 2D.

Produce a set of three correspondences that can be exactly registered with a
Euclidean transformation in 2D.

Show that d + 2 correspondences are enough to exactly specify a projective
transformation in d dimensions.

Section 16.2 has: “ This means that in the best case you will need to look at

of the order of )

[max(M, N)]*
samples to see one set of three good samples.” Explain.
Imagine you obtain two LIDAR images of the same object from two different

locations. Why do you not expect a near exact correspondence between the
points in these two point clouds? (hint: this isn’t about noise).

PROGRAMMING EXERCISES
16.10. Implement a simple IRLS for 2D Euclidean transformations.

(a) Use this to reproduce Figure 16.1 and Figure 16.3, using a rectangle like
that in the figures.

(b) Now use your implementation to reproduce Figure 16.1 and Figure 16.3,
but now using an ellipse with aspect ratio 3.

(¢) Now use your implementation to reproduce Figure 16.1 and Figure 16.3,
but now using an ellipse with aspect ratio 1.05 — how often do you get the
rotation right? is this what you expect? why?

(d) Now use your implementation to reproduce Figure 16.1 and Figure 16.3,
but now using a shape like that of Figure 16.4. Is this registration sensitive
to uneven sampling of the shape?

16.11. Implement a simple RANSAC for 2D Euclidean transformations.

(a) How well does this behave under the conditions of Figure 16.3, using a
rectangle like that in the figures?

(b) How well does this behave under the conditions of Figure 16.3, now using
an ellipse with aspect ratio 37

(c¢) How well does this behave under the conditions of Figure 16.3, now using
an ellipse with aspect ratio 1.057 how often do you get the rotation right?
is this what you expect? why?

(d) How well does this behave under the conditions of Figure 16.3, now using
a shape like that of Figure 16.4. Is this registration sensitive to uneven
sampling of the shape?
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16.12. Implement a simple ICP for 2D Euclidean transformations.
(a) Use this to produce figures like Figure 16.4 and Figure 16.5.
(b) Investigate the effect of shape on how often at which your ICP converges
to a bad transformation.
(c) Investigate the effect of sampling on how often at which your ICP con-
verges to a bad transformation. Trying to reproduce something like Fig-
ure 16.7 is a good place to start.



306 Chapter 16 Registration, Correspondence and Outliers



