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Why extract keypoints?

• Motivation: image alignment
• We have two images – how do we combine them?

Step 1: extract keypoints
Step 2: match keypoint features
Step 3: align images



Keypoint representations support very fast methods

In some applications, GPU just isn’t available
 -too heavy; too much power; etc
And there isn’t much CPU either

Idea: reduce image to keypoints, work with those



Need to find

Where is it:

What scale its at:

What orientation its at:

In a way that is (mostly) unaffected by 
image transformations
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Corner detection matrix

This is very like a covariance matrix
Also, it’s a second order approximation to the image
Intensity (later slides)



Deriving a corner detection criterion

• Basic idea: we should easily recognize the point by looking 
through a small window

• Shifting a window in any direction should give a large change 
in intensity

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions



Deriving a corner detection criterion

• Change in appearance of window 𝑊 for the shift (𝑢, 𝑣):

I(x, y)
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Deriving a corner detection criterion

• Change in appearance of window 𝑊 for the shift (𝑢, 𝑣):

• We want to find out how this function behaves for small shifts

E(u, v)

𝐸 𝑢, 𝑣 = )
(",$)∈'
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Deriving a corner detection criterion

• First-order Taylor approximation for small shifts (𝑢, 𝑣):

𝐼 𝑥 + 𝑢, 𝑦 + 𝑣 ≈ 𝐼 𝑥, 𝑦 + 𝐼"𝑢 + 𝐼$𝑣

• Recall: first-order Taylor approximation for a 1D function:

𝑓 𝑥 + 𝑢 ≈ 𝑓 𝑥 + 𝑓! 𝑥 𝑢

𝑥 𝑥 + 𝑢



Deriving a corner detection criterion

• First-order Taylor approximation for small shifts (𝑢, 𝑣):

𝐼 𝑥 + 𝑢, 𝑦 + 𝑣 ≈ 𝐼 𝑥, 𝑦 + 𝐼"𝑢 + 𝐼$𝑣

• Plug this into 𝐸(𝑢, 𝑣):

𝐸 𝑢, 𝑣 = )
(",$)∈'

𝐼 𝑥 + 𝑢, 𝑦 + 𝑣 − 𝐼(𝑥, 𝑦) (

≈ )
",$ ∈'

𝐼 𝑥, 𝑦 + 𝐼"𝑢 + 𝐼$𝑣 − 𝐼 𝑥, 𝑦
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Deriving a corner detection criterion

𝐸 𝑢, 𝑣 ≈ 𝑢(∑",$ 𝐼"( + 2𝑢𝑣∑",$ 𝐼"𝐼$ +𝑣(∑",$ 𝐼$(
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𝑢
𝑣

Second moment 
matrix 𝑀



Deriving a corner detection criterion

𝐸 𝑢, 𝑣 ≈ 𝑢(∑",$ 𝐼"( + 2𝑢𝑣∑",$ 𝐼"𝐼$ +𝑣(∑",$ 𝐼$(

• This is a quadratic function of (𝑢, 𝑣):

• How can we analyze the shape of this surface?

E(u, v)

≈



Visualization of second moment matrices



Visualization of second moment matrices

Note: axes are rescaled 
so ellipse areas are 
proportional to edge 
energy (i.e., bigger 
ellipses correspond to 
stronger edges)



Corner response function

“Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small

𝛼: constant (0.04 to 0.06)

𝑅 = det 𝑀 − 𝛼	trace 𝑀 ( = 𝜆)𝜆( − 𝛼(𝜆) + 𝜆()(





The Harris corner detector

1. Compute partial derivatives 𝐼" and 𝐼$ at each pixel
2. Compute second moment matrix in a Gaussian window 

around each pixel 
3. Compute corner response function 𝑅 = det 𝑀 −

𝛼	trace 𝑀 (

4. Threshold 𝑅
5. Find local maxima of response function (NMS)

C.Harris and M.Stephens, A Combined Corner and Edge Detector, 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 

1988.  

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector: Example



Harris Detector: Example

Compute corner response 𝑅



Harris Detector: Example

Find points with large corner response: 𝑅 > threshold



Harris Detector: Example

Take only the points of local maxima of 𝑅



Harris Detector: Example



Behavior w.r.t. image transformations

• To be useful for image 
matching, “the same” corner 
features need to show up 
despite geometric and 
photometric transformations

• We need to analyze how 
the corner response function 
and the corner locations 
change in response to 
various transformations



Affine intensity change

• What happens to the corner response function in case of 
intensity shifts (𝐼	®	𝐼 + 𝑏)?
• It depends only on image derivatives, so it’s invariant to intensity shifts

• What about intensity scaling (𝐼	®	𝑎 𝐼)?
• Not fully invariant if threshold stays constant

R

x (image coordinate)

threshold

R

x (image coordinate)

𝐼	®	𝑎 𝐼	 + 	𝑏



Image translation

• How do the detected corner locations change if the image 
pattern is translated?
• All the ingredients of the second moment matrix are shift-invariant, 

and so is the corner response function
• However, the locations of the corners are equivariant (or covariant) 

w.r.t. shifts
Translate the image – the corners translate



Image rotation

• How do the detected corner locations change if the image 
pattern is rotated?
• Assuming the second moment matrix is calculated over a circular 

neighborhood (and ignoring resampling issues), the rotation changes 
but the eigenvalues stay the same, so the response function is 
invariant

• The locations of the corners are equivariant (or covariant) w.r.t. 
rotations

Rotate the image – the corners rotate



Image scaling

• How do the detected corner locations change if the image 
pattern is scaled?
• Assuming fixed-size neighborhoods for calculating the second 

moment matrix, the corner response function is not invariant and the 
corner locations are not equivariant w.r.t. scaling

Not corners!
Corner

Scale the image – lose/gain some corners  (but not too bad)



Need to find

Where is it:

What scale its at:

What orientation its at:

Description of contents:

In a way that is (mostly) unaffected by 
image transformations



Laplacian of Gaussian
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Orientation histogram peak for orientation



Notice how useful a Gaussian pyramid could be here



Need to find

Where is it:

What scale its at:

What orientation its at:

Description of contents:

In a way that is (mostly) unaffected by 
image transformations



SIFT features

SIFT features
• SIFT=Scale Invariant Feature Transform
• Very strong record of effectiveness in matching applications
• SIFT features behave very well using nearest neighbors matching

– i.e. the nearest neighbor to a query patch is usually a matching 
patch



Describing a window’s contents

We want description to be:
• Invariant to changes in image brightness:   - use orientations
• Robust to noise:  - ignore orientations with small magnitude
• Distinctive:  - use lots of local orientations
• Invariant to small errors in location:  

•  “bucket” the orientations in image
• Use a histogram for each bucket





SIFT for matching

• The main goal of SIFT is to enable image matching in the 
presence of significant transformations

• To recognize the same keypoint in multiple images, we need to 
match appearance descriptors or “signatures” in their neighborhoods

• Descriptors that are locally invariant w.r.t. scale and rotation can 
handle a wide range of global transformations



SIFT: Scale-invariant feature transform

D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004 
D. Lowe. Object recognition from local scale-invariant features. ICCV 1999

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www-staff.informatik.uni-frankfurt.de/asa/seminare/Literatur/L99-Lowe_SIFT_1999.pdf
http://www-staff.informatik.uni-frankfurt.de/asa/seminare/Literatur/L99-Lowe_SIFT_1999.pdf
http://www-staff.informatik.uni-frankfurt.de/asa/seminare/Literatur/L99-Lowe_SIFT_1999.pdf


SIFT for matching
• Extraordinarily robust detection and description technique

• Can handle changes in viewpoint
– Up to about 60 degree out-of-plane rotation

• Can handle significant changes in illumination
– Sometimes even day vs. night

• Fast and efficient—can run in real time
• Lots of code available

Source: N. Snavely



A hard matching problem

NASA Mars Rover images



NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Answer below (look for tiny colored squares…)



Think about this...


