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Why extract keypoints?

» Motivation: image alignment
» We have two images — how do we combine them?
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Why extract keypoints?

» Motivation: image alignment
» We have two images — how do we combine them?

Step 1: extract keypoints
Step 2: match keypoint features
Step 3: align images



Keypoint representations support very fast methods

In some applications, GPU just isn’t available
-too heavy; too much power; etc
And there isn't much CPU either

|ldea: reduce image to keypoints, work with those



Need to find

Where is it:

What scale its at: _
In a way that is (mostly) unaffected by

image transformations

What orientation its at:
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Corner detection matrix
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window
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window

This is very like a covariance matrix
Also, it's a second order approximation to the image
Intensity (later slides)



Deriving a corner detection criterion

« Basic idea: we should easily recognize the point by looking
through a small window

 Shifting a window in any direction should give a large change
In intensity

“flat” region: “‘edge”: “‘corner’:
no change in no change significant
all directions along the edge change in all

direction directions



Deriving a corner detection criterion

« Change in appearance of window W for the shift (u, v):
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Deriving a corner detection criterion

« Change in appearance of window W for the shift (u, v):

E(u,v) = Z [[(x+uw,y+v)—I1(x,y)]?

(x,y)ew

 We want to find out how this function behaves for small shifts

E(u, v)




Deriving a corner detection criterion

« First-order Taylor approximation for small shifts (u, v):

Ix+uy+v)=I(xy) +Lu+lv

» Recall: first-order Taylor approximation for a 1D function:

7F(x +u) & f(0) + f(u

X XxX+u



Deriving a corner detection criterion

« First-order Taylor approximation for small shifts (u, v):

Ix+uy+v)=I(xy) +Lu+lv
* Plug this into E'(u, v):
E(u,v) = z [[(x+u,y+v)—I1(xy)]?

(x,y)eEw

o Z [1G6,Y) + L + Ly — 1(x, )]
(x,y)ew

= z |Lou + va]z = Z IZu? + 2L 1uv + Ijv?
(x,y)ew (x,y)ew



Deriving a corner detection criterion

E(u,v) = u*Ypylf + 2uv Yy Lly +v2 ¥y I3

z 12 z L1,
X,y X,y

Z L1, Z I;

L X,y X,y i

Second moment
matrix M




Deriving a corner detection criterion

E(u,v) = u*Ypylf + 2uv Yy Lly +v2 ¥y I3

« This is a quadratic function of (u, v):

b v)

2

 How can we analyze the shape of this surface?
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Corner response function

R = det(M) — a trace(M)?* = 111, — a(Aq + 13)?

a: constant (0.04 to 0.06)
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The Harris corner detector

1. Compute partial derivatives I, and I,, at each pixel

2. Compute second moment matrix in a Gaussian window
around each pixel

3. Compute corner response function R = det(M) —
a trace(M)?

4. Threshold R
5. Find local maxima of response function (NMS)

C.Harris and M.Stephens, A Combined Corner and Edge Detector,
Proceedings of the 4th Alvey Vision Conference: pages 147—151,
1988.



http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector: Example




Harris Detector: Example

Compute corner response R




Harris Detector: Example

Find points with large corner response: R > threshold




Harris Detector: Example

Take only the points of local maxima of R




Harris Detector: Example




Behavior w.r.t. image transformations

* To be useful for image
matching, “the same” corner
features need to show up
despite geometric and
photometric transformations

* We need to analyze how
the corner response function
and the corner locations
change in response to
various transformations




Affine intensity change

||:{>.

I—>al + b

« What happens to the corner response function in case of
intensity shifts (I —1 + b)?
« |t depends only on image derivatives, so it's invariant to intensity shifts
« What about intensity scaling (I — a I)?
* Not fully invariant if threshold stays constant

RA

AN

threshold
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X (image coordinate)
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X (image coordinate)



Image translation

>

™

How do the detected corner locations change if the image
pattern is translated?

All the ingredients of the second moment matrix are shift-invariant,
and so is the corner response function

However, the locations of the corners are equivariant (or covariant)
w.r.t. shifts

Translate the image — the corners translate



Image rotation

N o A
Z AN

« How do the detected corner locations change if the image
pattern is rotated?

« Assuming the second moment matrix is calculated over a circular

neighborhood (and ignoring resampling issues), the rotation changes
but the eigenvalues stay the same, so the response function is
invariant

- The locations of the corridntate theivmage(er itveatmtensriotate
rotations



Image scaling

r.
Corner

)

el \

Not corners!

 How do the detected corner locations change if the image

pattern is scaled?

« Assuming fixed-size neighborhoods for calculating the second
moment matrix, the corner response function is not invariant and the
corner locations are not equivariant w.r.t. scaling

Scale the image — lose/gain some corners (but not too bad)



Need to find

Where is it:

What scale its at:

What orientation its at:

Description of contents:

In a way that is (mostly) unaffected by
image transformations



Laplacian of Gaussian

The Laplacian of a function in 2D is defined as

?f P
ox2  Oy?

[t is natural to smooth the image before applying a Laplacian. Notice that the
Laplacian is a linear operator and is shift invariant (exercises), meaning that we
could represent taking the Laplacian as convolving the image with some kernel
(which we write as Ky2). Because convolution is associative, we have that

(V) (z,y) =

(Ky2 % (Go % 7)) = (Kv2 % Go) T = (V2Gy) * T.

The reason this is important is that, just as for first derivatives, smoothing an
image and then applying the Laplacian is the same as convolving the image with
the Laplacian of the smoothing kernel. Figure 8.10 shows what happens for the
usual case where smoothing is Gaussian smoothing. This kernel looks like a dark
blob with a light ring around it on a gray background (closed form expression in
the exercises). As the scale of the Gaussian gets larger, the blob gets bigger.



This means the Laplacian of Gaussian can be used to find the radius of the
neighborhood around a given corner located at i, j in Z. Write L, for a Laplacian
of Gaussian kernel where the Gaussian has scale 0. Now, for each o, place the
kernel on the image, centered at the corner, and compute

V(O-) — Z I’i—u,j—vﬁa;uv-

The o that maximizes (or minimizes) V(o) is the radius to use. This value has
strong covariance properties. Imagine image S is the same as Z, but is upsampled

factor of k. Then the value of o chosen by this procedure for S will be £ times
the value chosen for Z. This is because the value is, essentially a dot-product (as
in Section 41.2), and scores the match between the image and the kernel. If the
image is upsampled by k, the best matching kernel should just £ times the scale.
This argument works for downsampling as well as upsampling, and is fine as long
as there is no serious loss of information in the upsampling or downsampling (which
is most of the time).



Need to find

Where is it:

What scale its at:

What orientation its at:

Description of contents:

In a way that is (mostly) unaffected by
image transformations



Orientation histogram peak for orientation

Orientation histograms are a natural representation of image patches. However, you
cannot represent orientations in image coordinates (for example, using the angle to
the horizontal image axis), because the patch you are matching to might have been
rotated. You need a reference orientation so all angles can be measured with respect
to that reference (this is the filled gray circle in Figure 8.6). A natural reference
orientation is the most common orientation in the patch. Compute a histogram
of the gradient orientations in this patch, and find the largest peak. This peak is
the reference orientation for the patch. If there are two or more peaks of the same
magnitude, make multiple copies of the patch, one at each peak orientation.



Notice how useful a Gaussian pyramid could be here
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Where is it:

What scale its at:

What orientation its at:
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SIFT features

SIFT features

« SIFT=Scale Invariant Feature Transform
» Very strong record of effectiveness in matching applications
« SIFT features behave very well using nearest neighbors matching

—i.e. the nearest neighbor to a query patch is usually a matching
patch



Describing a window’s contents

We want description to be:

Invariant to changes in image brightness: - use orientations
Robust to noise: - ignore orientations with small magnitude

Distinctive: - use lots of local orientations
Invariant to small errors in location:

 “bucket” the orientations in image
» Use a histogram for each bucket
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Image gradients Keypoint descriptor
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FIGURE 5.14: To construct a SIFT descriptor for a neighborhood, we place a grid over
the rectified neighborhood. Each grid is divided into a subgrid, and a gradient estimate
1s computed at the center of each subgrid element. This gradient estimate is a weighted
average of nearby gradients, with weights chosen so that gradients outside the subgrid
cell contribute. The gradient estimates in each subgrid element are accumulated into
an orientation histogram. Each gradient votes for its orientation, with a vote weighted
by its magnitude and by its distance to the center of the neighborhood. The resulting
orientation histograms are stacked to give a single feature vector. This is normalized to
have unit norm; then terms in the normalized feature vector are thresholded, and the
vector 1s normalized again.



SIFT for matching

The main goal of SIFT is to enable image matching in the
presence of significant transformations

To recognize the same keypoint in multiple images, we need to
match appearance descriptors or “signatures” in their neighborhoods

Descriptors that are locally invariant w.r.t. scale and rotation can
handle a wide range of global transformations




SIFT: Scale-invariant feature transform

D. Lowe. Object recognition from local scale-invariant features. ICCV 1999

D. Lowe. Distinctive image features from scale-invariant keypoints. /[JCV 60 (2), pp. 91-110, 2004



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www-staff.informatik.uni-frankfurt.de/asa/seminare/Literatur/L99-Lowe_SIFT_1999.pdf
http://www-staff.informatik.uni-frankfurt.de/asa/seminare/Literatur/L99-Lowe_SIFT_1999.pdf
http://www-staff.informatik.uni-frankfurt.de/asa/seminare/Literatur/L99-Lowe_SIFT_1999.pdf

SIFT for matching

« Extraordinarily robust detection and description technique

« Can handle changes in viewpoint
— Up to about 60 degree out-of-plane rotation

« Can handle significant changes in illumination
— Sometimes even day vs. night

* Fast and efficient—can run in real time
* Lots of code available

v <>

———— -~
Source: N. Snavely




A hard matching problem

NASA Mars Rover images



Answer below (look for tiny colored squares...)

NASA Mars Rover images
with SIFT feature matches

Figure by Noah Snavely



Think about this...

8.3.
8.4.
8.5.
8.6.
8.7.
8.8.

8.9.

8.10.

8.11.

Is the Harris corner detector invariant to changes of brightness?

Is the Harris corner detector invariant to rotations of the image?

Why do you need a local maximum of the Harris corner score?

Show the Laplacian is a linear operator.

Show the Laplacian is shift invariant.

To find the scale of a corner, you apply Laplacian of Gaussian filters at different
o, and choose the scale that gives the maximal (or minimal) response. Why
should a filter that does this look like a dark blob with a light ring or a light
blob with a dark ring?

Show the Laplacian of a Gaussian with scale o is rotationally symmetric. This
is much easier than it might seem (writing out an expression is a recipe for
frustration — think about what the graph of the function looks like).

Imagine you use a filter other than the Laplacian of Gaussian to find the scale
at a corner. Why would it need to be rotationally symmetric?

Is the scale estimated at a corner invariant to changes in intensity? (assume
you know where the corner is)



