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Key idea of segmentation

* Break images/videos into large, useful pieces

* internally coherent pieces
 same color; same color and texture; etc

* simplify
* |dentify key objects



Segmentation — master recipe

There is a master recipe for image segmentation. This relies on clustering. a
procedure that takes individual data items — for example, pixels, image patches —
and produces blobs or clusters consisting of many similar data items.

Procedure: 9.1 Image Segmentation: Master recipe

Compute a feature vector at each pixel of the image, then cluster the
feature vectors. Each segment consists of the pixels whose feature vec-

tors are in the same cluster.




Agglomerative and divisive

Generally, to cluster data items, you must determine (a) how many clusters there
are; and (b) which data items belong to which cluster. There are two natural
clustering algorithms. In agglomerative clustering, you start with each data
item being a cluster, and then merge clusters recursively to yield a good clustering.
In divisive clustering, you start with the entire data set being a cluster, and then
split clusters recursively to yield a good clustering. Mostly, divisive clustering 1sn’t
much used in vision applications.
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Distances between clusters

* Distances between points are easy
* but distances between clusters?

e Three standard solutions

* Distance between the closest pair of points
* single link clustering
* can get long thin clusters in feature space
* Distance between furthest pair of points
 complete link clustering
* blobby clusters in feature space
* Average of distances in clusters

* average link clustering
* tendsto blobby



Distances

* Cluster on color —feature vectoris (r, g, b)
* but clusters might not even be connected

* Cluster on color and position—(r, g, b, X, y)
* “blobby” clusters

* BUT whatifr, g, bareinrangeO, 1
e andx,yisinrange 0, 10247
* scaling problem; fix with elementary fiddling

* More interesting segmentation
* more complicated feature vectors
* more serious scaling problems



Mahalanobis

Start with a dataset of N d-dimensional vectors; write {x} for the dataset
and x; for the i’th item. Write the covariance matrix for this dataset Covmat ({x}).

Definition: 9.1 The Mahalanobis Distance

The Mahalanobis distance between two vectors x; and x; is

(x; — xj)T Covmat ({x}) " (x; — X;)

To understand this distance, diagonalize the covariance matrix to get
UT Covmat ({x})UU = A.

Because U is a rotation, it has no effect on distances. If you transform the co-
ordinates to obtain r; = Ux;, the covariance for the r; is A exercises . This
is diagonal, so the directions are independent. In the Mahalanobis distance, each
direction is scaled by its variance exercises . This makes sense — if the “blob” of
data is spread out more in one direction, large differences in that direction should
not count much when you compute the distance. But in directions where the data
does not spread out, even small distances are important.



Dimension reduction

* If you use high dimensional features

* many small eigenvalues in Covmat
* general experimental phenomenon

* Issue with Mahalanobis distance
* divide by small number exaggerates effect
* generalization problems

* Fix
* ignore variation in these directions

* equivalently
* project onto lower dimension
 compute Mahalanobis distance in that space



Procedure: 9.2 Computing Mahalanobis Distance with Dimension Re-
duction

At training time: Obtain a large, representative sample of the data
items you will work with; write {x} for the dataset of N d-dimensional
vectors and x; for the 7’th item. Write the covariance matrix for this
dataset Covmat ({x}). Diagonalize this covariance to obtain

U™ Covmat ({x})U = A.

Ensure that the values along the diagonal are sorted. Choose s < d for
the new dimension of the data. Form the s x d matrix P, consisting of
the first s rows of U7 . Form A, consisting of the s x s upper left block
of A. Finally, form D = PTA;1P.

At run time: The dimension reduced Mahalanobis distance between
two vectors u and v is

(u=v)'D(u—-v)




Things to think about

9.1.
9.2.
9.3.

9.4.

Single link clustering tends to yield extended clusters; why?

Complete link clustering tends to yield rounded clusters; why?

Assume the covariance of some features is diagonal. When you compute a dis-
tance function, why does it make sense to scale each direction by the standard
deviation?

Recall Covmat ({x}) must be a symmetric matrix. Show you can diagonalize
this matrix by finding its eigenvalues and eigenvectors.



