Graph based Image
Segmentation

D.A. Forsyth,

University of lllinois at Urbana Champaign

Graphs

A graph is given by a set of vertices V and a set of edges (pairs of vertices, £). The
graph is a weighted graph if each edge has an associated weight. A cut partitions
the graph into two sets of vertices (say V4 C V and Vg C V) and two sets of edges
(Ea C € and Ep C &) such that VANVp =0, VaUVp =V, £4 contains only pairs
of V4 vertices and £ contains only pairs of Vg vertices. These ideas are quite
visual (Figure 9.7).

Graph Weighted graph Cut Common graph for images

Key idea of segmentation

* Break images/videos into large, useful pieces
* internally coherent pieces
 same color; same color and texture; etc
* simplify
* |dentify key objects

There is a master recipe for image segmentation. This relies on clustering. a
procedure that takes individual data items — for example, pixels, image patches —
and produces blobs or clusters consisting of many similar data items.

Procedure: 9.1 Image Segmentation: Master recipe

Compute a feature vector at each pixel of the image, then cluster the
feature vectors. Each segment consists of the pixels whose feature vec-

tors are in the same cluster.

Grabcut

e |dea:

* segment foreground from background
* using rough model of appearance
* ensure there are few/no isolated pixels

* each pixel gets a binary variable
* 1 forforeground, O for background
* build probability model of features for both
* P(feats]i]|z_i=1) and P(feats]i]|z_i=0)
* many methods; normal distribution is one possibility

* use graph to force pixels to “be like their neighbors”

FG/BG only

e Choose z i to minimize:

Z (z; [— log P(f;|foreground)| + (1 — 2;) [— log P(f;|background)]).

If there are edges...

Z i

* Cases:
* (z_I1,z_j) are:
* (0,0),(1,1) - agree, both background/foreground
* (1,0), (0, 1) - disagree

Z_]

Common graph for images

ziziEij11+ (1 — zi)zjEij01 + zi(1 — zj)Eij10 + (1 — z:)(1 — 2z5) Eij.00

Minimize

* by choice of z_i (V’s, E’s are known)

Z (ziVii+ (1 —2)Vio) + Z

A% (i,5)€&

* General case v. nasty

* IF cheaperto agree than disagree

(

ZizjBij 11+
(1 — Zi)ZjEz'j,(n‘F
2i(1 —2;)Eij10+

\ (1 —2)(1 = 25)Eij 00

* very fast algorithms are available (OOS)

* this is the case we care about.

)

Setting up the cost function...

* E_ijOO=E_ij11=0

* z_Ineqg z_j should be more expensive when their
features are similar

Write f; for the feature representing the i’th pixel. GrabCut chooses

Eijo1 = Eiji0 = 76_6[(fi_fj)T(fi_fj)].

Here g = (1/2)(1/m), m is an average of (f; — fj)T (f; — £;) over a sample of distinct
image pixels, and v is a parameter. Notice that once you have a solution, you can

Parameter

A large value of v makes it very expensive for two pixels with an edge between
them to have different z values. If you make the common choice of graph, then
pixels are forced to agree with their neighbors in the absence of strong evidence
they should disagree. This should remove isolated foreground or background labels.
A large value of v favors a shorter boundary between foreground and background,
so too large a value of v can result in an oversimplified boundary. As you reduce
the value of v, the boundary will become more complicated, but isolated pixels may
appear.

Interactive segmentation

First Final
segmentation Strokes segmentation

More segments

* GrabCut did two pieces
* but needed foreground/background models

e To cluster

* Build an affinity matrix
* represents affinity between vertices

* Use this to cut graph

* components should
* beinternally coherent (high internal affinity)
* be different (low affinity across cut)

Affinity matrices

* How similaris node i and node j?
* typically each node is a pixel
* large number —very similar
* small number —very different

e Common case:
e use distances

It is straightforward to construct affinities out of distances. If d(x;,x;) is the
distance between two feature vectors, then

d(x;.x;)2°
exp (_ (xi))

is an affinity (big when similar, small when different). Here o is a scale used to
adjust the affinity. Now represent the affinities between each pair of points in a
matrix A, and recover clusters by analysis of that matrix.

The simplest clustering...

A good cluster is one where elements that are strongly associated with the cluster
also have large values connecting one another in the affinity matrix. Write w for
the vector of weights linking elements to the cluster. Now the function

is a sum of terms of the form

{association of element 7 with the cluster}
x {affinity between 7 and j}

x {association of element j with the cluster} .

You can obtain a cluster by choosing a set of association weights that maximize this
objective function. The objective function is useless on its own because scaling w
by A scales the total association by A\?. However, you can normalise the weights by
requiring that w? w = 1, so it is natural to maximize w! Aw subject to wlw = 1.
This is an eigenvalue problem (exercises) and you must solve

Aw = Aw.

For problems where reasonable clusters are apparent, these cluster weights should
be large for some elements, which belong to the cluster, and nearly zero for others,
which do not (Figure 9.10). In fact, you can get the weights for other clusters from
other eigenvectors of A as well.

Eigenvectors are natural

* They’re permutation covariant

Normalized cuts

Formalize this as decomposing a weighted graph V' into two components A and B
and scoring the decomposition with

cut(A, B) . cut(A, B)
assoc(A,V) assoc(B,V)

(where cut(A, B) is the sum of weights of all edges in V' that have one end in A and
the other in B, and assoc(A, V') is the sum of weights of all edges that have one end
in A). This score is small if the cut separates two components that have few edges
of low weight between them and many internal edges of high weight. One seeks
the cut with the minimum value of this criterion, called a normalized cut. Actually
finding this cut is algorithmically tricky. Reasonable approximation procedures are
known, but are out of scope. The criterion is successful in practice (Figure 9.11
and 9.12). At least one efficient implementation is available for download (https:
//ncut-pytorch.readthedocs.io/en/latest/).

Normalized cut segmentations

Normalized cut segmentations

Evaluating segmentations

* Compare to human segmentations of scenes

* Detailed comparison requires care

* humans don’t always agree
* boundaries may not be on exactly the right spot

* There is now an established procedure (notes)

Things to think about

a

9.9. How would you model foreground pixels with a Gaussian for GrabCut? How
good do you expect this model to be?
9.10. Assume you model foreground pixels with a histogram for GrabCut. What
problems would zero counts create?

