The K-means algorithm

D.A. Forsyth,

University of lllinois at Urbana Champaign



Setup

Write x; for a set of N data items, which have been coerced to be vectors. Assume
you know that there are k clusters. Write c; for the center of the jth cluster. Write
d; ; for a discrete variable that records which cluster a data item belongs to, so

5 — 1 if x; belongs to cluster j
10 otherwise

Every data item belongs to exactly one cluster, so > i 0; j = 1. Every cluster must
contain at least one point, so ) . J; ; > 0 for every j. The sum of squared distances
from data points to cluster centers is then

(6, c) = Z 8ij [(xi — c;) T (xi — c;)] .

Notice how the §; ; are acting as “switches”. For the 7’th data point, there is only
one non-zero d; ; which selects the distance from that data point to the appropriate
cluster center.

You could cluster the data by choosing the § and ¢ that minimizes ®(4,c).
This would yield the set of k clusters and their cluster centers such that the sum
of distances from points to their cluster centers is minimized. There is no known
algorithm that can minimize ® exactly in reasonable time. The §; ; are the problem:









Approximation

Notice that if the ¢’s are known, getting the d’s is easy — for the 2’th data point,
set the 0; ; corresponding to the closest ¢; to one and the others to zero. Similarly,
if the d; ; are known, it is easy to compute the best center for each cluster — just

average the points in the cluster. These observations yield a remarkably effective
approximate algorithm. Iterate:

e Assume the cluster centers are known and allocate each point to the closest
cluster center.

e Replace each center with the mean of the points allocated to that cluster; if
there are no points in the cluster, restart the cluster by choosing some point
uniformly and at random from the dataset and making that the cluster center.












Procedure: 9.3 K-means clustering

Initialize by choosing k£ and k initial cluster centers c;.
Iterate until convergence:

e Allocate each data item x; to the closest cluster center.

e Replace each center with the mean of the points allocated to that
cluster; if there are no points in the cluster, choose some point
uniformly and at random from the dataset and make that the
cluster center.

Test convergence by a combination of tests. Always stop when the
number of iterations exceeds a threshold. You could stop if the cluster
centers have moved by less than a threshold between iterations. Finally,
if the allocation of data items to cluster centers has not changed between
iterations, the method must have converged.




kmeans on color

* top k=10, bottom k=30

Replace pixels
with cluster
center Image

4




kmeans color and position

k=10, height

k=30, heigH

k=30, height




Issues

* |nitializing
e random choice of cluster centers
* kmeans++, notes

* Empty clusters
e random restart

* Scattered points
* junk cluster

e What is k?

* very hard from cluster metrics
* application considerations



Efficiency

* What if the dataset is gigantic and k is huge?
* subsample data; build a tree

e Hierarchical k-means



Hierarchical k-means

Remember this: Build a tree using k-means by clustering a sample
of the data, then allocating new data to the cluster with the closest center,
and recurring. Stop when there is too little data in a cluster.




Things to think about

9.5.

9.6.

9.7.

9.8.

Confirm that the cost function for k-means does not go up at each iteration,
as long as no cluster required restarting.

Section 9.3.2 has “If there are more centers, each data point can find a center
that is closer to it, so the value should go down as k goes up.” Does this always
happen? could the value go up?

Section 9.3.2 has “The best k is then the number of data points, which is not
helpful.” Explain.

You cluster 1e6 data points with hierarchical k-means, using random subsam-
pling and k£ = 100; roughly how many leaves to you expect? How deep do you
expect the tree to be?



