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Another property of images

* They’re built out of patches that tend to repeat

* So there is often a patch some distance away
that looks like the patch you’re looking at
* even for quite big patches



Denoising images using patches
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Inpainting

« Simplest case:

* some fraction of pixels has been “knocked out” at
random

* (perhaps set to zero)
* and you know which pixels

* Fix:
* take window around knocked out pixel
* find closest match in the image
* take the center pixel from matching window
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Inpainting for bigger knockouts

* Assume a kxk window gets "knocked out” (k
small, but k>1)

* Procedure works if you are careful about
matching

* -egdon’t match to windows that have knocked
out pixels






Incremental inpainting

Now imagine that the process that knocks out pixels doesn’t just choose pixels at
random, but has some some kind of spatial structure. For example, you might have
an image with writing on it, and want to replace the writing. Alternatively, the
image might have one more more large holes in it.

The pixel inpainting procedure above will work, but some details need to
change. When isolated pixels are knocked out, you expect that the patch around
the pixel is known. If the image has a large hole in it, this no longer applies. Fixing
a pixel requires you have at least some known pixel values close to it. Choose such
a pixel, and match the patch using the known pixels only. You can do this with a
mask that zeros the contribution of knocked out pixels to the SSD. This produces
a pool of matches. Now estimate the value of the pixel using this pool. For the
moment, choose the center of the best match. Place this value in the image, and you
now have an image with a slightly smaller hole in it, so you should be able to find
more candidate pixels for replacing. In this incremental reconstruction approach,
the order in which you visit pixels and the size of the patch becomes important and
can quite strongly affect the result.






Example

Incremental inpainting makes big

Images from small
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But this Is a weird noise model...

* You *know™ which pixels are wrong
* What about additive gaussian noise?

* The principle here is that there are other patches in the
image that are “like” the patch you are interested in

* |dea — estimate pixel value using
* aweighted sum *over all patches™ weighted by similarity
* of patch to neighborhood around pixel



Non-local means

The approach is easily formalized. Write K (p;;, Puy) for a function that
compares an image patch p;; around the ¢, j'th pixel with the image patch around
the u, v’th pixel. This function should be large when the patches are similar, and
small when they are different. A useful estimate of the pixel value x;; at 7, 7 is then

K(pija puv)xuv
Zkleimage K (pij; Pim)

uwvelmage

Notice that the weights sum to one. The estimate clearly depends quite strongly
on the choice of K.



The gaussian Kernel: One natural choice uses SSD between patches. Write
NSSD(pij, Puv)) for the sum of squared differences between the two patches nor-
malized to deal with the number of pixels in the patch (exercises), write o for some
scale chosen to work well, note that I have suppressed the size of the patch, and

use
(-NSSDioy; )

KnNgsD (Pijs Puv) = € 5o

The method described here is sometimes known as non-local means. As described,
it is very slow (quadratic in the number of pixels). Methods to speed it up remain
difficult, and are out of scope (exercises ). As Figure 9.8 shows, non-local means
can suppress a great deal of noise without blurring edges.
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The Bilateral Filter

The gaussian kernel weights down patches that are different from the target
patch, but pays no attention to the distance between patches. A natural extension,
known as the bilateral filter, downweights patches based on their distance. This
gives

(-NSSD,; pu)) ([0 +G-2])
Kbilat (pija puv) = € 202 € 274

where o4 controls the rate at which a patches contribution falls off with distance.
The bilateral filter admits significant speedups (exercises ).



Things to think about

10.1.

10.2.
10.3.

10.4.

10.5.

10.6.

Do you expect to observe every possible set of RGB pixel values in images?
why?

Why do you need a masked normalized SSD to inpaint missing regions?
Section 10.1.3 has: “Just tiling the texture won’t work. The patches may not
join up properly” — Explain.

You wish to inpaint an hole in an image. Why does the order you choose to
fill in pixels matter?

You wish to inpaint an hole in an image. Suggest a good order in which to
visit pixels to inpaint. Would this work for every case?

You want to increase the size of a patch of texture as in Section 10.1.3. Why
1s 1t important to choose from several patches at random?



