
Forming and using patch
dictionaries

D.A. Forsyth
University of Illinois at Urbana Champaign

Forming and using patch dictionaries

• Idea:
• other patches in an image are good for denoising
• why not use other patches in other images?

• Issues:
• how to find the right patch in a very large number of

patches?
• redundancy
• many patches are like one another, and so just make

work

Desirable outcome

• Procedure to
• accept a patch
• produce a patch/some patches that are similar

• Built out of very large number of patches

Why K-means is useful

• Take input patch

• Find its cluster center

• Use patches in the cluster or the cluster center
itself to denoise the image

Hierarchical K means

• But what if there are too many data points?
• too many clusters, finding cluster center is hard

• IDEA:
• Cluster data using K means
• Each cluster is now a dataset
• Cluster each dataset using K means

• Notice this is a simple tree; you could make it
deeper.

• Notice this is a simple tree; you could make it
deeper.

Nearest neighbors

• Idea:
• Find the patch that is closest to query patch, denoise

(etc) with that

• Issue:
• How to do this fast? (v. hard)

Approximate nearest neighbors

• Idea:
• “Walk” input patch down hierarchical k-means tree

• Find closest patch from patches in the leaf cluster

• Use that instead of nearest neighbor

ANN and k-means

ANN and k-means

• Idea:

• “Walk” input patch down hierarchical k-means tree

• Find closest patch from patches in the leaf cluster

• Use that instead of nearest neighbor

• Fact: not nearest neighbor; with high probability
nearly as close

• Fact: hard to find a closer neighbor by walking tree

ANN and k means

Denoising with a patch dictionary

• Procedure:
• Divide noisy image into patches, which could overlap
• Match each patch using a dictionary (ANN using

HKM)
• Reconstruct

• if the patches don’t overlap, easy
• if they do, average

Options when matching

• Walk tree, find patch in leaf that is closest to
query patch

• Walk tree, use mean of all patches in leaf
• - this should be better than you might think

• cause all the patches should be quite similar

Denoising with a patch dictionary
- overlapping

Denoising with a patch dictionary,
no overlap

Dictionary size has a significant
effect

• Dictionary 1 – 1e7 patches, 200, 000 images, 2000 leaves

• Dictionary 2 – 5 e 7 patches, 1e6 images

Vector quantization

• Walk tree, use mean of all patches in leaf
• - this should be better than you might think

• cause all the patches should be quite similar

• Notice that you have built a mapping. You could
replace the mean with the number of the leaf to
get: patch-> leaf

• This has a range of uses – compression, etc.

Building features with VQ

• Image might have variable size

• Histogram has fixed size

VQ and voting
• Problem:
• you want to classify an image

• Strategy:
• learning:
 get many labelled images
 cut into patches
 build tree
 for each leaf, record the most common label

• classifying:
cut image into patches
pass patch down tree
vote for label

Now old-fashioned, but moderately
effective and very good in its time

Denoising from weird noise
• Imagine you have very strange noise, and you can simulate it

• You want to denoise

• Strategy:
• Take many images, and create (noisy – clean) pairs
• Carve into patches and build a HKM tree using only the noisy patches

• (but keep the clean patch – so each data item is (noisy –
clean) but the clusters, etc are formed using noisy alone)

• To denoise:
• carve up noisy image into patches
• walk the tree with the noisy patches
• at leaf, substitute the clean version of the best match

Image to image mapping

• You could do:
• image to edge map (fairly well)
• image to normal map (rather badly)
• quantized image to image

• You’d have a lot of trouble with:
• edge map to image
• image to depth map

