

The convolution theorem

D.A. Forsyth,
University of Illinois at Urbana Champaign

Reference table in notes

TABLE 11.1: *Some useful Fourier transform pairs.*

Function	Fourier transform	Tag
$f(x, y)$	$\iint_{-\infty}^{\infty} f(x, y) e^{-i2\pi(ux+vy)} dx dy = \mathcal{F}(f)(u, v)$	1
$\iint_{-\infty}^{\infty} \mathcal{F}(f)(u, v) e^{i2\pi(ux+vy)} du dv = f(x, y)$	$\mathcal{F}(f)(u, v)$	2
$\frac{\partial f}{\partial x}(x, y)$	$u\mathcal{F}(f)(u, v)$	3
$0.5\delta(x+a, y) + 0.5\delta(x-a, y)$	$\cos 2\pi au$	4
$\cos 2\pi ax$	$0.5\delta(u+a, v) + 0.5\delta(u-a, v)$	5
$e^{-\pi(x^2+y^2)}$	$e^{-\pi(u^2+v^2)}$	6
$box_2(x, y)$	$\frac{\sin u}{u} \frac{\sin v}{v}$	7
$f(ax, by)$	$\frac{\mathcal{F}(f)(u/a, v/b)}{ab}$	8
$\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x-i, y-j)$	$\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(u-i, v-j)$	9
$f(x-a, y-b)$	$e^{-i2\pi(au+bv)} \mathcal{F}(f)$	10
$f(x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)$	$\mathcal{F}(f)(u \cos \theta + v \sin \theta, -u \sin \theta + v \cos \theta)$	11
$(f * g)(x, y)$	$\mathcal{F}(f)\mathcal{F}(g)(u, v)$	12

The convolution theorem

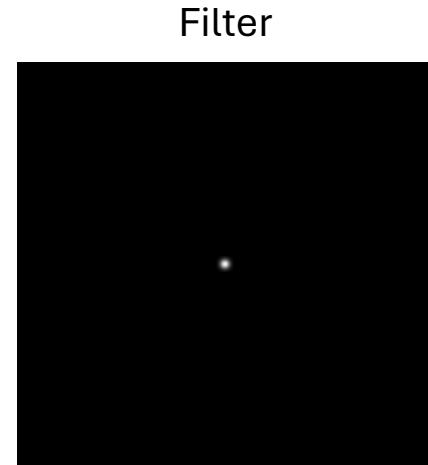
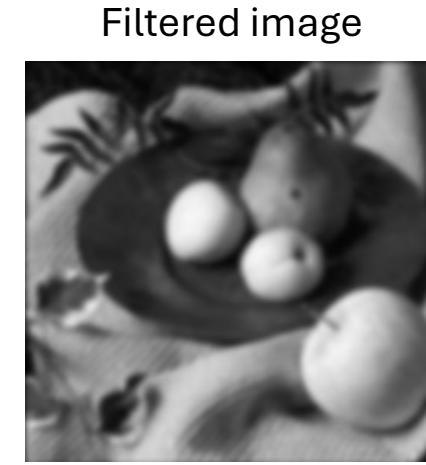
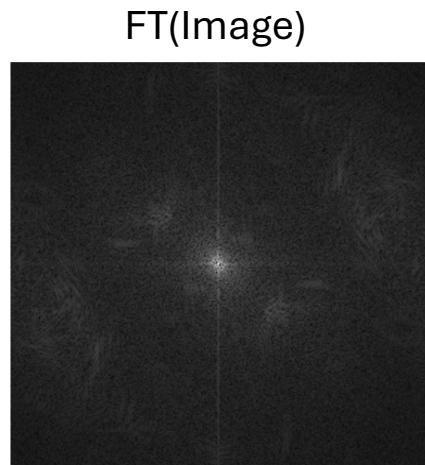
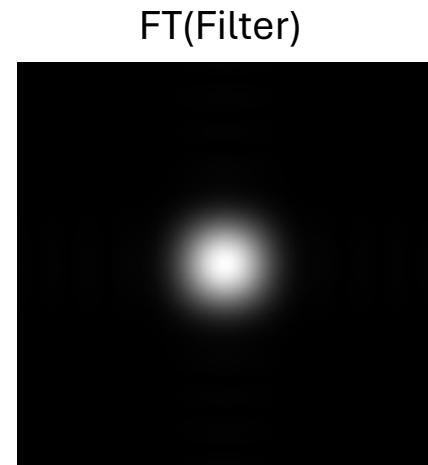
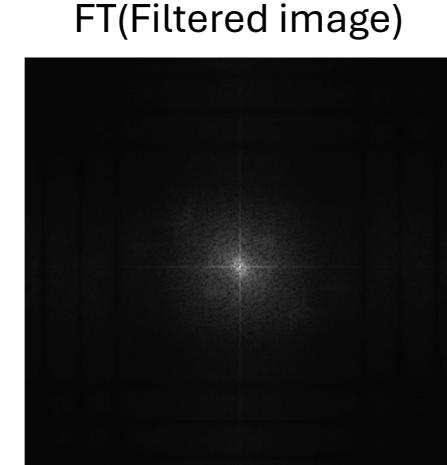
- **Convolution** in the spatial domain is **multiplication** in the frequency domain (and vice versa)
- The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$\mathcal{F}\{f * g\} = \mathcal{F}\{f\} \mathcal{F}\{g\}$$

- The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:

$$\mathcal{F}^{-1}\{FG\} = \mathcal{F}^{-1}\{F\} * \mathcal{F}^{-1}\{G\}$$

2D convolution theorem example



Easy to prove

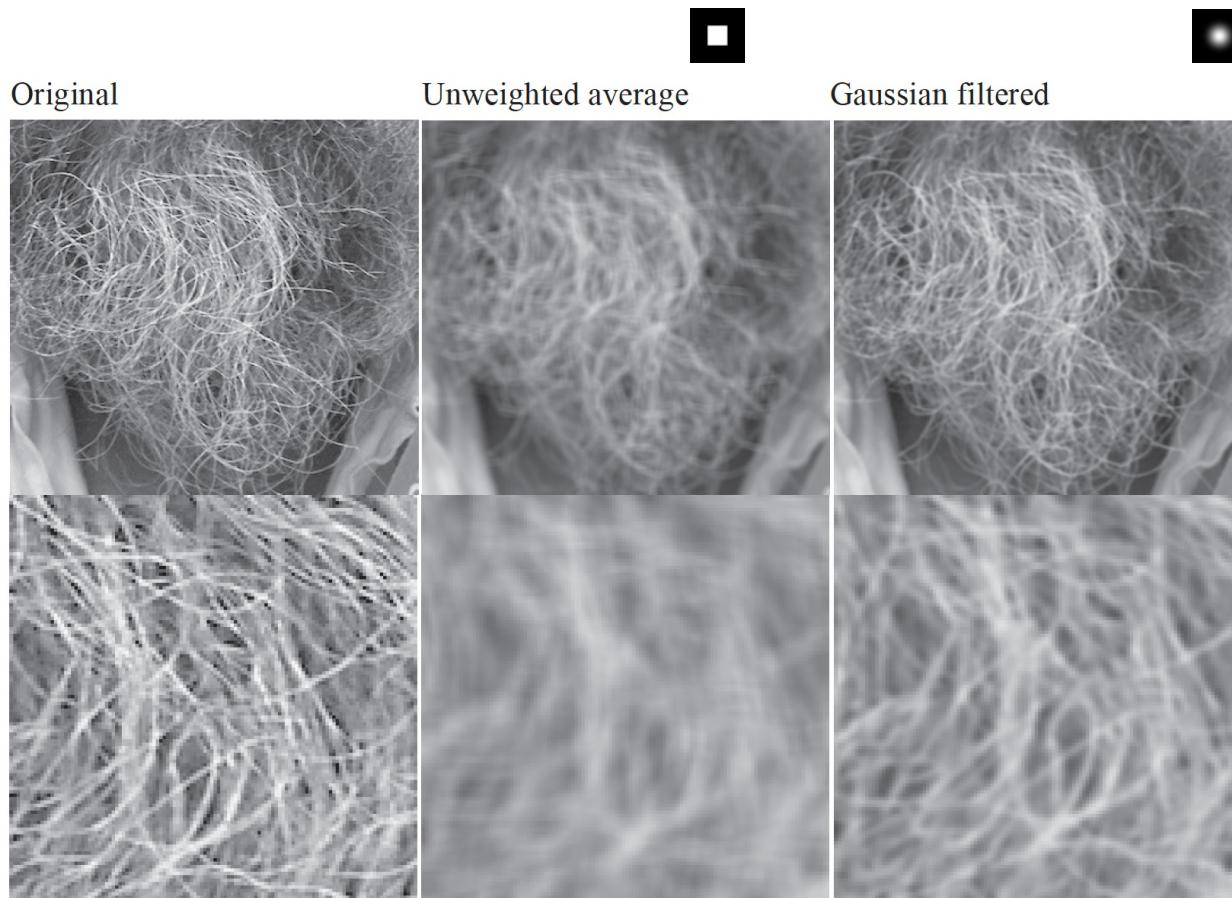
$$\begin{aligned}\mathcal{F}(f * g) &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau \right) \exp [-i2\pi ut] dt \\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t - \tau)g(\tau) \right) \exp [-i2\pi ut] dt d\tau && \text{Swap integration bounds} \\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t - \tau) \exp [-i2\pi ut] dt g(\tau) \right) d\tau && \text{Move } g \text{ out of integral} \\ &= \int_{-\infty}^{\infty} [\mathcal{F}(f)] \exp [-i2\pi u\tau] g(\tau) d\tau && \text{Shift result from before} \\ &= [\mathcal{F}(f)] \int_{-\infty}^{\infty} g(\tau) \exp [-i2\pi u\tau] d\tau \\ &= [\mathcal{F}(f)] [\mathcal{F}(g)].\end{aligned}$$

Convolution theorem

- Suppose f and g both consist of N pixels
- What is the complexity of computing $f * g$ in the spatial domain?
 - $O(N^2)$
- And what is the complexity of computing $\mathcal{F}^{-1}\{\mathcal{F}\{f\}\mathcal{F}\{g\}\}$?
 - $O(N \log N)$ using FFT
- Thus, convolution of an image with a large filter can be more efficiently done in the frequency domain

Mystery 1

Why does filtering with a Gaussian give a nice smooth image, but filtering with a box filter gives artifacts?



Gaussian case

- Convolution theorem:

$$\text{FT (filtered)} = \text{FT(gaussian)}\text{FT(image)}$$

- FT(gaussian) =another gaussian
- Weight falls off smoothly at higher frequencies

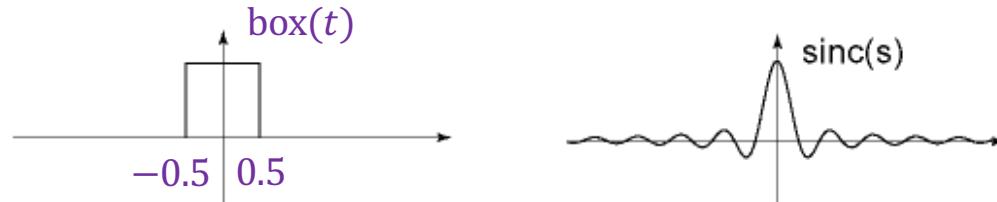
Box filter

- Convolution theorem:

$$\text{FT (filtered)} = \text{FT(box)} * \text{FT(image)}$$

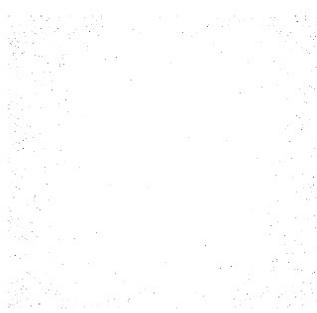
- $\text{FT(box)} = \text{sinc}$

$$\text{sinc}(u) = \frac{\sin(\pi u)}{\pi u}$$

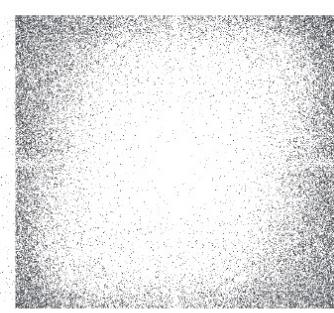


Magnitudes

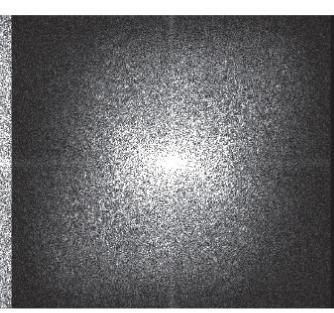
1



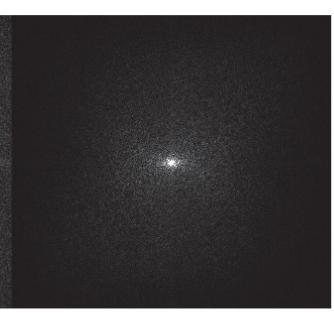
10



100

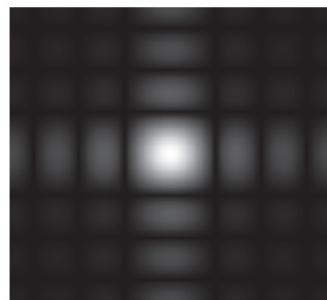
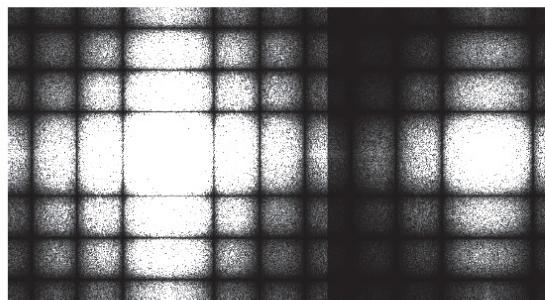


1000

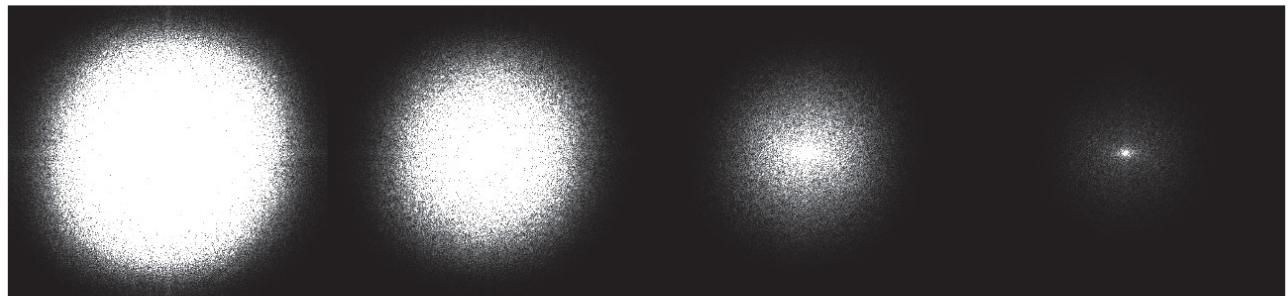


Image

Average



box filtered

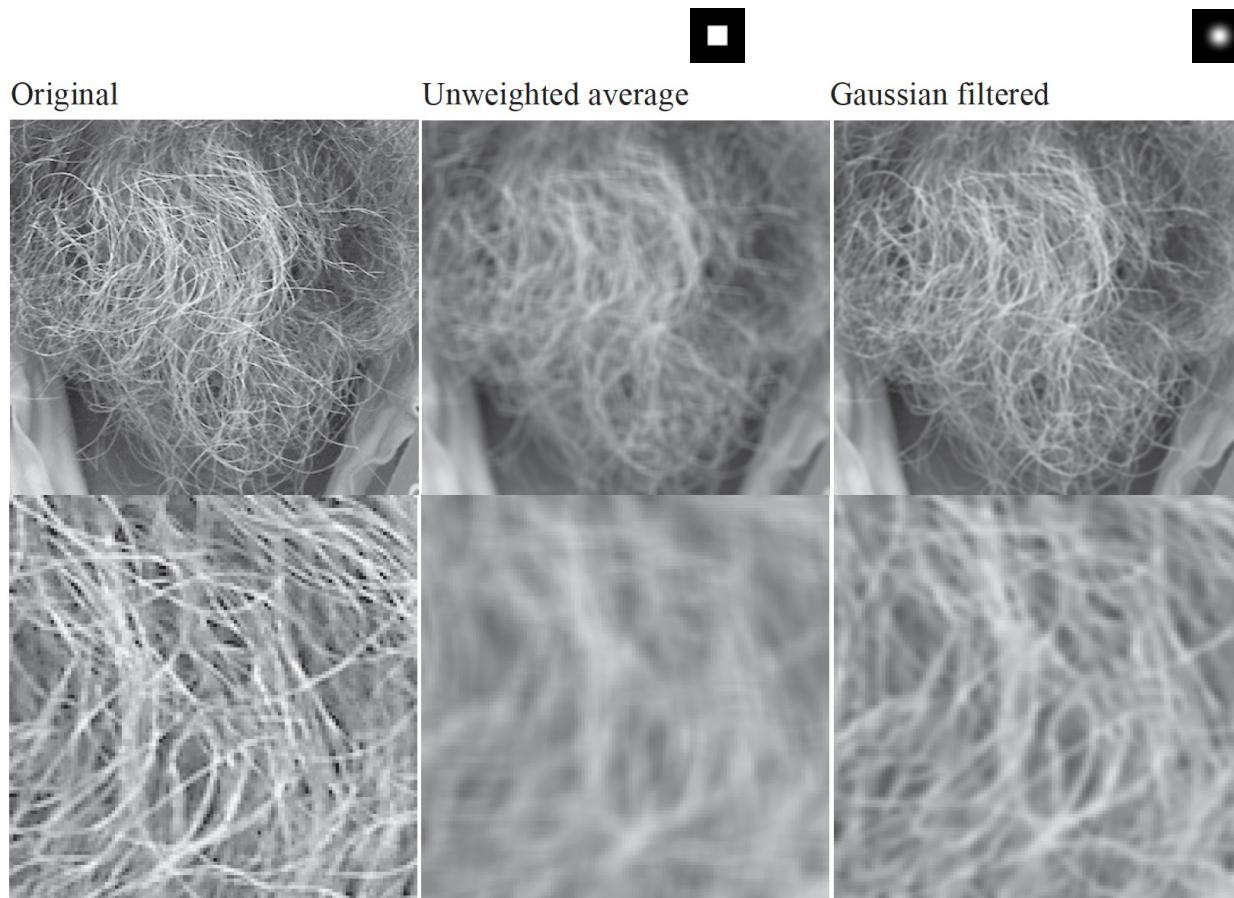


gaussian
filtered

Gaussian

Mystery 1, Solved

Why does filtering with a Gaussian give a nice smooth image, but filtering with a box filter gives artifacts?



Things to think about...

- 12.1. Is $f * g * h$ the same as $g * f * h$? (use the convolution theorem).
- 12.2. Convolution in the Fourier domain is equivalent to what in the signal domain?
- 12.3. Section 12.1 has: “But if an image is going to be heavily smoothed, it will lose a lot of detail, and the detailed form of the smoother might not matter much.” Explain.
- 12.4. Section 12.1 has: “Imagine you have a filter $f(x, y)$ that detects a small pattern. Then (say) $f(x/10, y/10)$ will detect a larger version of this pattern.” Explain.
- 12.5. Finding a pattern in a smoothed and downsampled version of the image is largely equivalent to finding a large version of the pattern in the original image. Explain.
- 12.6. Will ringing affect a gradient estimate?