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1D Fourier transform

e Define a set of basis functions:
l/)u(t) — eiZnut’ U € (_OO: OO)

* Compare Integer

— /N

e?Fmt — cos (2kmt) + i sin (2kt)



1D Fourier transform

e Define a set of basis functions:
Py (t) = e™™t  y € (—oo,0)

* |Inner product for complex functions is given by:
(f.9)= | F©g ©a

* Orthonormality:

? lf u1 — U,Z
0 otherwise

(lpul’ lpu2> =0(uy —u,) = {

j (O 8(D)dt = £(0)



1D Fourier transform

* Represent f(t)as

* aweighted combination
of the basis functions 1, (t) = e"*™ with weights F (u):

f(t) = fooF(u)eizm‘tdu

« Each weight F(u) given by the inner product of f and ,,:

FQw) = (f, ) = f F(O)e~2mut dg



1D Fourier transform

e Forward transform:

F()— F)

F(u) = foof(t)e_izm‘tdt

* Existence for FT’s is tricky.
« if [O|f(t)|? dtis finite, FT exists

* itdoes exist for many more functions, but
machinery gets quite complicated



1D Fourier transform

e Forward transform:
F(u) =f f(t)e 2rutde
 |nverse transform:

f(t) = foo F(u)e?™tdy

Fourier transform pairs f (t) < F(u)



1D Fourier transform

* Maps a real function to complex function
* so has magnitude and phase
* orreal and imaginary components

* I[mportant properties:

Energy preservation (Parseval’s theorem):

f:v(t)ﬁ dt = f:w(unz du

Linearity:

Flafi + bf,} = aF{f1} + bF{f2}



Important Fourier transform pairs

, box(t) sinc(u) = sin(rru)
U
~05/0.5 ] VTV
1
4 gauss(t; 0) { gauss (u; E)
, fO=1 , unit impulse §(w)

*The last one is formal since these functions don’t meet the mathematical requirements for FT



Important Fourier transform pairs

I

sin(mru
. box(t) sinc(w) = ()
mu
—0.5]0.5
Notice that when
f has narrower support, 1
FT(f) has broader, and 4 gauss(t; o) gauss (u; E)
Vice versa! . gk
fO=1 A unit impulse & (u)

A\ 4

Y

*The last one is formal since these functions don’t meet the mathematical requirements for FT



2D Fourier transform

e 2D basis functions:

lpu,v(x: y) — pl2TuX 5 12TTVY

— ei2n(ux+vy)

= cos 2m(ux + vy) +
[ sin 2m(ux + vy)



2D Fourier transform

13
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e 2D basis functions are oriented sinusoidal
|
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Ff
.-l . . * (u,v) isthe direction
normal to the grating

' e * The periodis

' 1/Vu? + v?

— / l




Basis function examples

Real
(w,v) component




Basis function examples

Real
(w,v) component




Basis function examples

Real
(w,v) component




Linear combination of basis functions

Real
(w,v) component




2D Fourier transform

F(u,v) = j f f(x,y)e 2mux+vy) gy dy

* QOutputis 2D and complex-valued:
F(u,v) = Re(F(u,v)) + i Im(F(u, v))

* Magnitude spectrum: |F(u,v)| = \/Re(F(u, v))? + Im(F (u, v))?
—1 Im(F(u,v))
Re(F(u,v))

* Phase angle spectrum: tan



2D Fourier transform

* Thisis a linear operator applied to the function

* Can get discrete approximation by:
* discretize a 2D function
* straighten into a vector
* multiply by appropriate matrix
* unstraighten vector

e Matrix comes from basis functions

* matrix multiplication can be made fast
* FFT=Fast Fourier Transform



Trick — low pass filter

* Multiply FT magnitude by Gaussian

e I[nverse FT

* High frequencies are suppressed



Smoothing by FT
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FIGURE 6.2: On the top left, the image of a four striped grass mouse with the
log magnitude of its Fourier transform on the bottom left. Center left, the
gaussian with o = 10 in u, v space. This is multiplied by the weights, and the log
magnitude of the result appears center right. Above this is the image obtained
by inverting the Fourier transform — equivalently, the low pass filtered image. Far
left shows the high pass filtered image, obtained by subtracting the low pass filtered
image from the original. I have not shown the log magnitude of the high pass
filtered image, because scaling makes the result quite difficult to interpret (it doesn’t
look filtered). The low pass filtered version is heavily blurred, because only the lowest
spatial frequencies appear in the result. Note the high pass filtered version contains
what is missing from the low pass version, so has few large values which appear at
edges. Image credit: Figure shows my photograph, taken at Kirstenbosch and Long
Beach respectively.



Smoothing with FT

LP Image
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Gaussian

FT magnitude LP magnitude

FIGURE 6.3: On the top left, the image of a four striped grass mouse with the log
magnitude of its Fourier transform on the bottom left. Center left, the gaussian
with o = 100 in u, v space. This is multiplied by the weights, and the log magnitude
of the result appears center right. Above this is the image obtained by inverting
the Fourier transform — equivalently, the low pass filtered image. Far left shows
the high pass filtered image, obtained by subtracting the low pass filtered image from
the original. I have not shown the log magnitude of the high pass filtered image,
because scaling makes the result quite difficult to interpret (it doesn’t look filtered).
The low pass filtered version is less heavily blurred than that in Figure 6.2, because
only the lowest spatial frequencies appear in the result. Note the high pass filtered
version contains what is missing from the low pass version, so has very few large
values which appear at edges. Image credit: Figure shows my photograph, taken at
Kirstenbosch and Long Beach respectively.



Phase vs. magnitude

* Phase from one image, magnitude from another



Phase

Log Magnitude




Mouse phase, octopus mag Octopus phase, mouse mag




Application: Removing periodic
patterns

Magnitude image

Remove peaks

Source: A. Zisserman


https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Important effect

e “wider” function has “narrower” Fourier transform

* “narrower” function has “wider” Fourier transform

Signal Magnitude spectrum

A J

FIGURE 7.1: Top shows f(t) and its magnitude spectrum, and bottom f(2t) and
its magnitude spectrum. Notice how narrowing the function broadens the Fourier

transform (from top to bottom); or broadening it narrows the Fourier transform
(from bottom to top).



Things to think about...

11.6.

11.7.

11.8.

11.9.

Section 11.2.1 describes the real and complex components as e'“™ “*TV¥) g_

nusoids on the z, y plane. Check that each term is constant when uzx + vy 1s

constant. .
Section 11.2.1 describes the real and complex components as 27 (4F+VY) giny_

soids on the z, y plane. Check that the frequency of each sinusoid is v/u? + v2.
In Section 11.2.4, I say the fact that the magnitude spectra of images tends to
be similar is related to the property that pixels mostly look like their neighbors.
Explain this relationship briefly.

In Section 11.2.6, I say: “change one pixel in an image, and you change the
whole Fourier transform”. Explain.



