

Sampling and Nyquist's theorem

D.A. Forsyth

University of Illinois at Urbana Champaign

Sampling in 2D

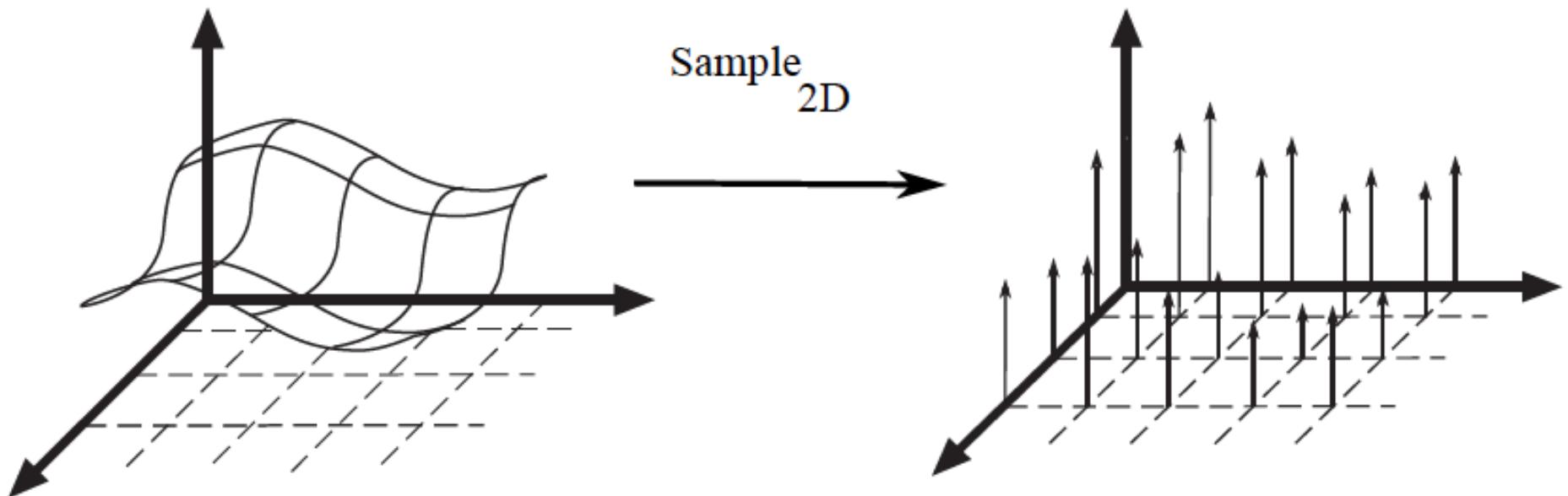


FIGURE 7.4: *Sampling in 2D takes a function and returns an array; again, we allow the array to be infinite dimensional and to have negative as well as positive indices.*

Modelling a sampled function

12.2.1 Modelling a Sampled Function

A crucial step is a reasonable model of a sampled function. Passing from a continuous function—like the irradiance at the back of a camera system—to a collection of values on a discrete grid —like the pixel values reported by a camera—is referred to as *sampling*. Sampling must lose information about the original function (for example, see Figure 3.4). Accounting for what is lost requires building a model of the sampling process quite carefully.

Write

$$\mathbf{sample}_{2D}(f)$$

for an operation that takes a continuous function in 2D and returns a sampled version. The sampled version should represent the values of f at all integer points (you can get any other uniform grid with a scale). It is highly desirable that $\mathbf{sample}_{2D}(f)$ produce a result that is compatible with integration. In particular, that

$$\int g(u, v) \mathbf{sample}_{2D}(f) dudv \approx \int g(u, v) f(u, v) dudv$$

Modelling a sampled function

to the extent possible for any $g(u)$. Recall the definition of the δ function in 2D (Definition 11.3). It turns out that the right choice for $\text{sample}_{2D}(f)$ is

$$\text{sample}_{2D}(f) = \sum_{ij} f(i, j) \delta(x - i, y - j)$$

The grid is infinite in each dimension to avoid having to write ranges, etc. (Figure 12.2). The δ function is a conceptual device to make the mathematical plumbing work properly. There is no need to place one at each sample function in an array inside your programs (and you can't – you'd have to have an opinion about the value of $\delta(0)$, which isn't going to work out). This definition yields a model which behaves well for integrals. In particular,

$$\int g(u) \text{sample}_{2D}(f) du = \sum_{ij} f(i, j) g(i, j)$$

Interpolation is by convolution

Recall the interpolate of Section 3.1 had the form

$$\mathcal{I}(x, y) = \sum_{i,j} \mathcal{I}_{ij} b(x - i, y - j).$$

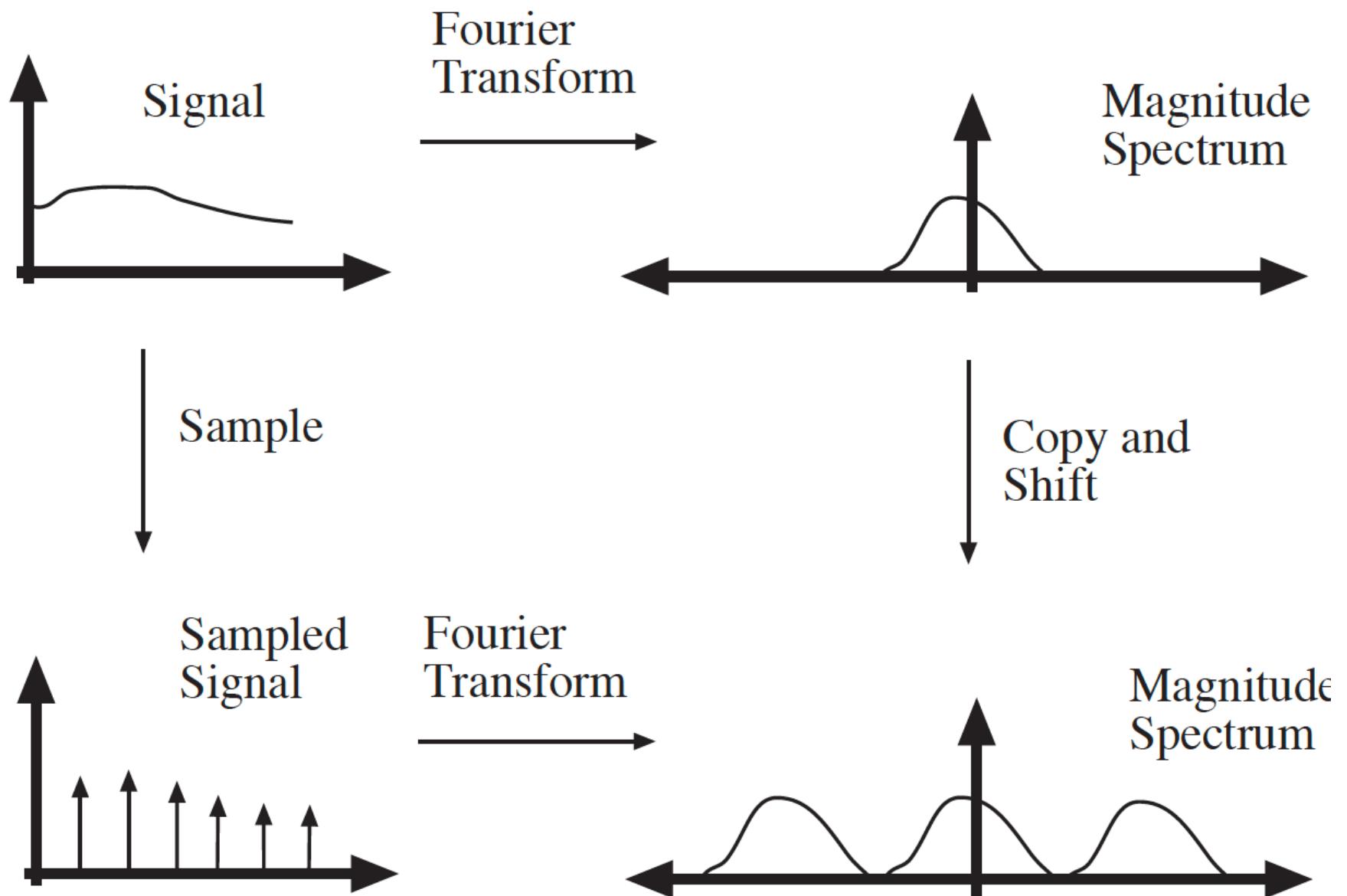
Here b is some function with the properties $b(0, 0) = 1$ and $b(u, v) = 0$ for u and v any other grid point. This is linear and shift invariant (**exercises**) so it must be a convolution. The way to see the convolution is to use the model of sampling, above. This exposes the convolution in interpolation. Check that

$$\begin{aligned} \text{sample}_{2D}(\mathcal{I}) * b &= \int \int \sum_{ij} \mathcal{I}_{ij} \delta(x - u - i, y - v - j) b(u, v) dudv \\ &= \sum_{ij} \mathcal{I}_{ij} \int \int \delta(x - u - i, y - v - j) b(u, v) dudv \\ &= \sum_{i,j} \mathcal{I}_{ij} b(x - i, y - j) \text{ from the property of a } \delta \text{ function} \end{aligned}$$

The FT of a sampled signal

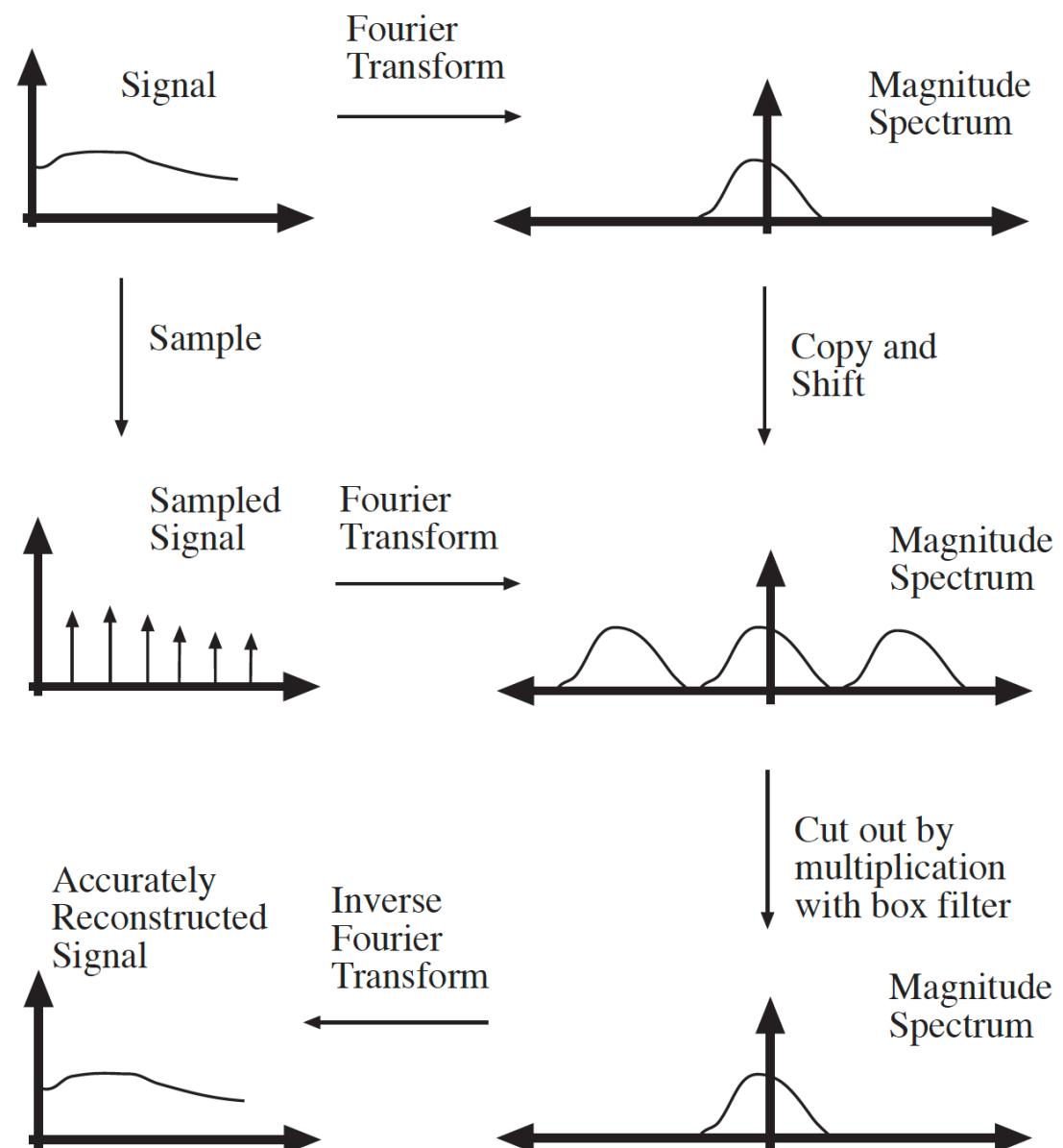
$$\begin{aligned}\mathcal{F}(\text{sample}_{2D}(f(x, y))) &= \mathcal{F} \left(f(x, y) \left\{ \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x - i, y - j) \right\} \right) \\ &= \mathcal{F}(f(x, y)) * \mathcal{F} \left(\left\{ \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x - i, y - j) \right\} \right) \\ &= \sum_{i=-\infty}^{\infty} \mathcal{F}(f)(u - i, v - j),\end{aligned}$$

The FT of a sampled signal



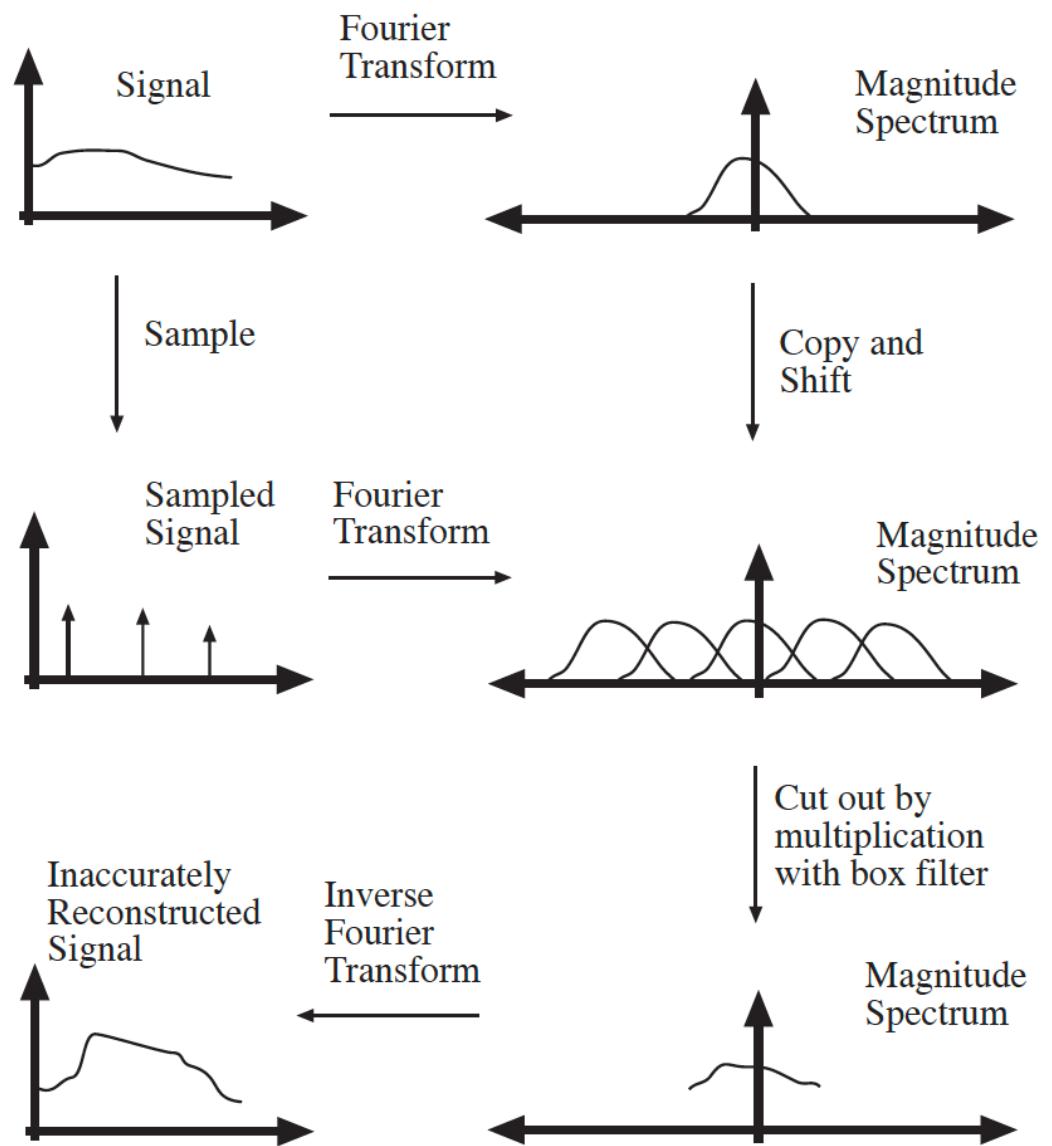
Sampling

- If the magnitude blobs don't overlap, you can reconstruct from samples
- Just cut out the blob in FT space with a box filter, inverse FT



Sampling

- If the magnitude blobs overlap, you can't reconstruct from samples
- Cutting out won't work – you'll get some information from a different frequency that aliases
- Nyquist's theorem



Consequences

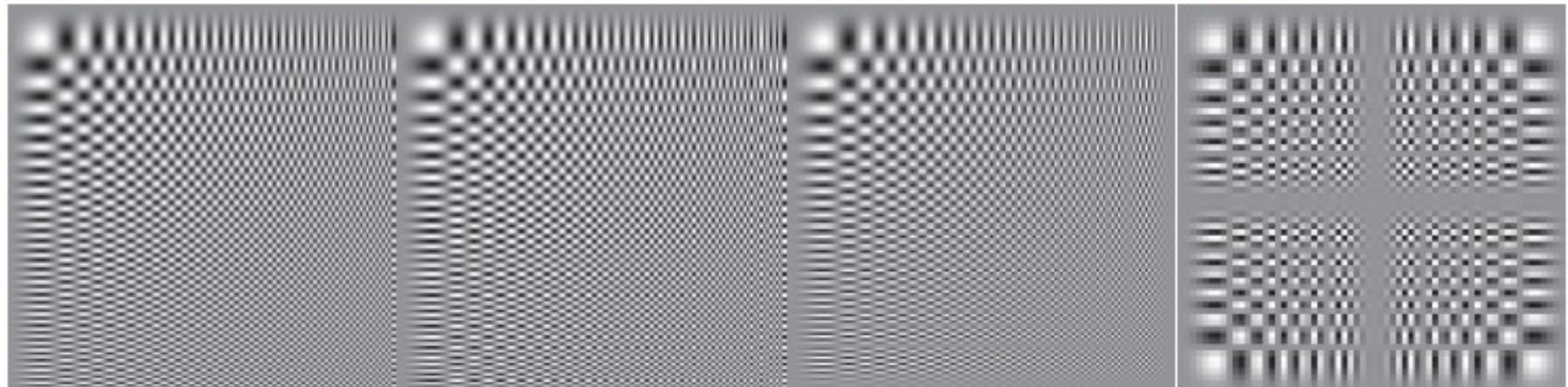
- Nyquist limits aren't really viable
 - Apply the convolution theorem
 - A box in FT magnitude space is a filter with infinite support (and you can't make one of those)
- You're forced to choose a filter that is low pass, but isn't perfect
 - the choice has consequences
 - Gaussian is such a filter

512x512

256x256

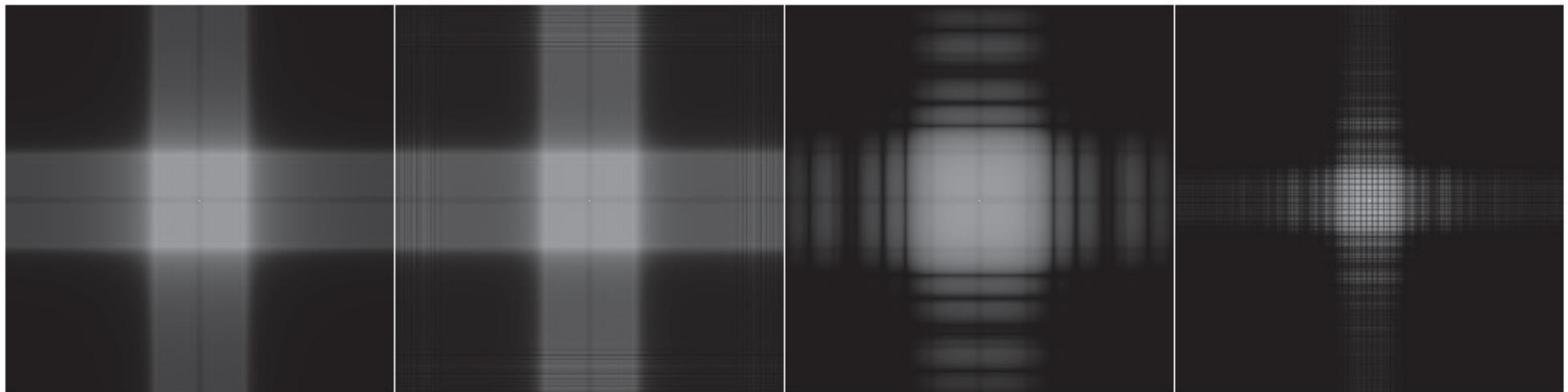
128x128

64x64



$\sigma=1$

$\sigma=2$



$\sigma=1$

$\sigma=2$

Mystery 2

- Why can downsampling sometimes lead to aliasing?

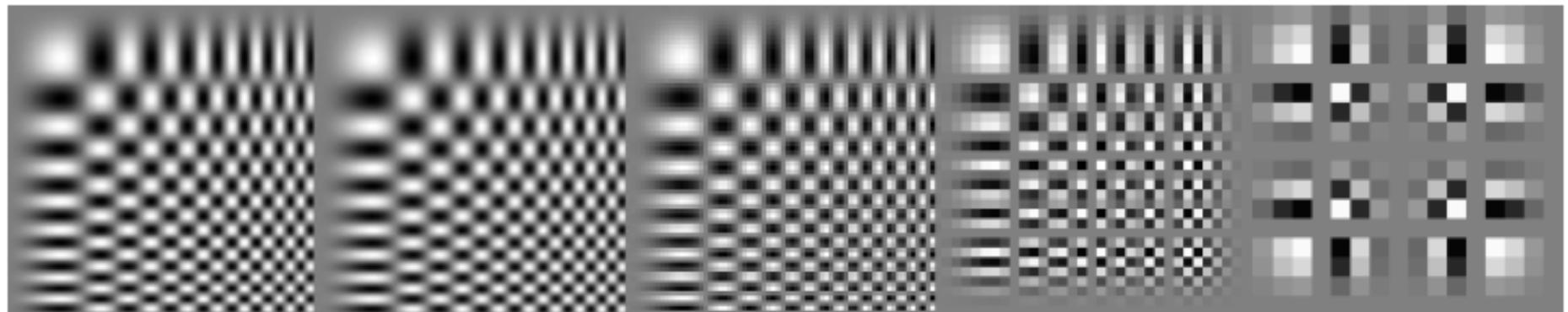
256x256

128x128

64x64

32x32

16x16



The downsampling mangles the Fourier Transform magnitude spectrum UNLESS you smooth by enough; and if you do, you lose some information

Mystery 2 SOLVED

- Why can downsampling sometimes lead to
aliasing?

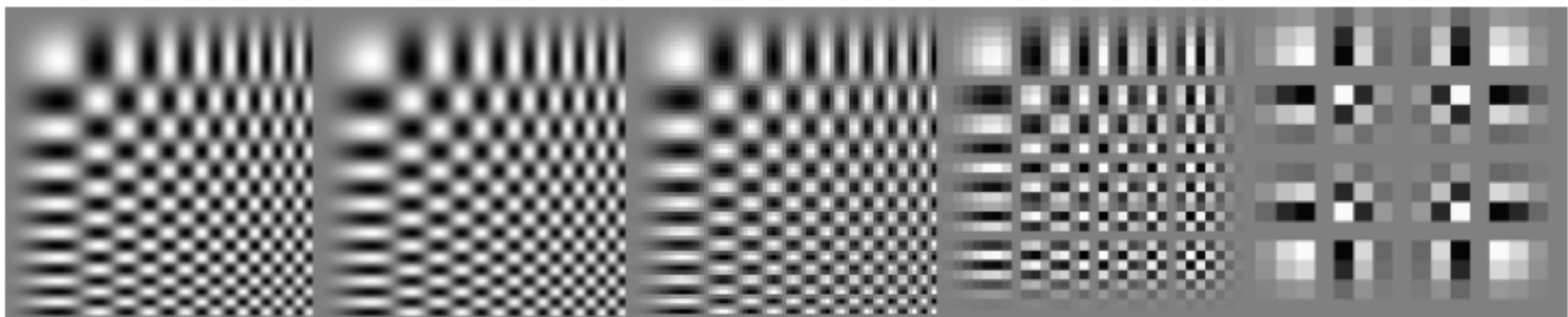
256x256

128x128

64x64

32x32

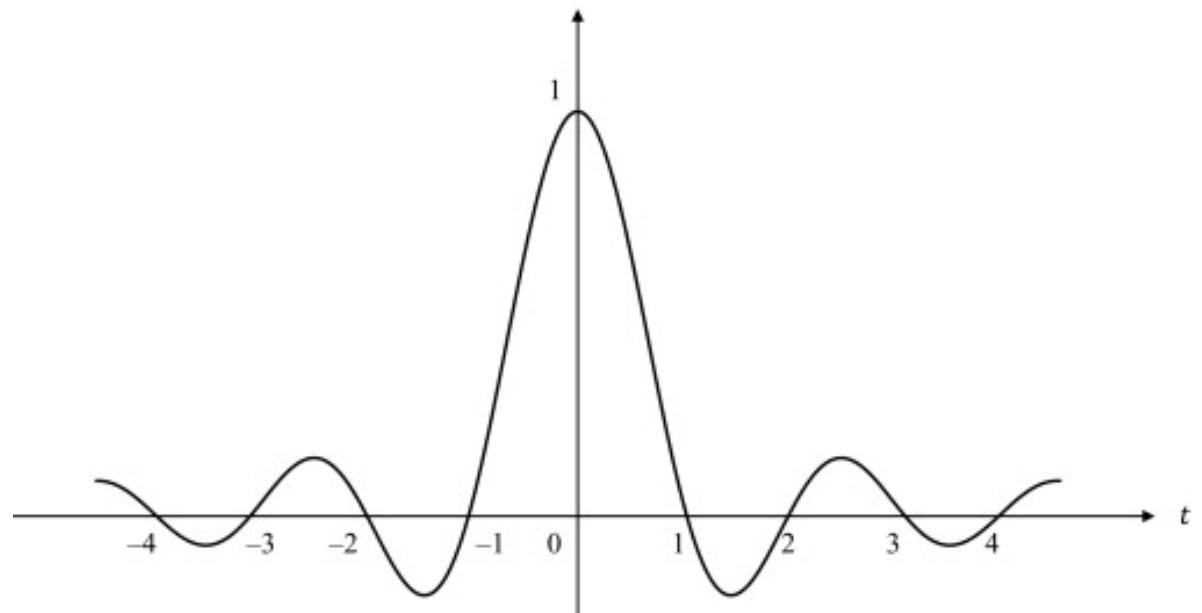
16x16



- The downsampling mangles the Fourier Transform magnitude spectrum UNLESS

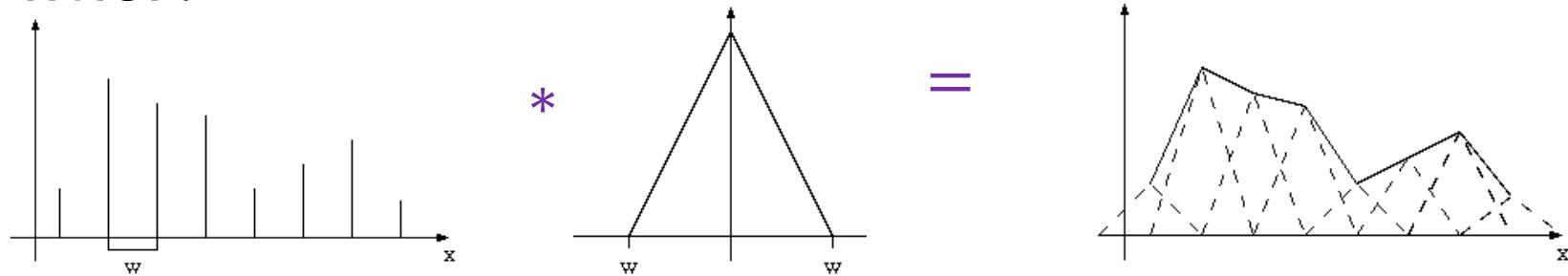
Analyzing interpolation methods

- Perfect reconstruction requires convolution with a sinc filter in the spatial domain,
 - which is bad because sinc has infinite support
- Instead, simpler reconstruction (interpolation) methods are typically used

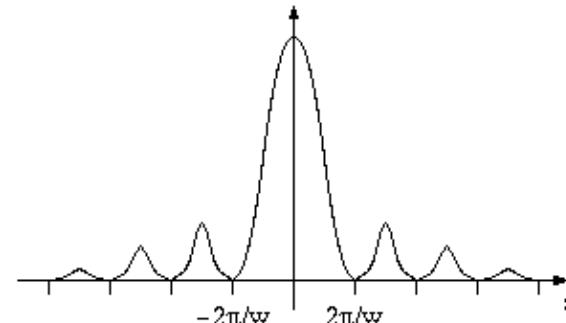


Analyzing interpolation methods

- Linear reconstruction: convolve with *triangle filter*:

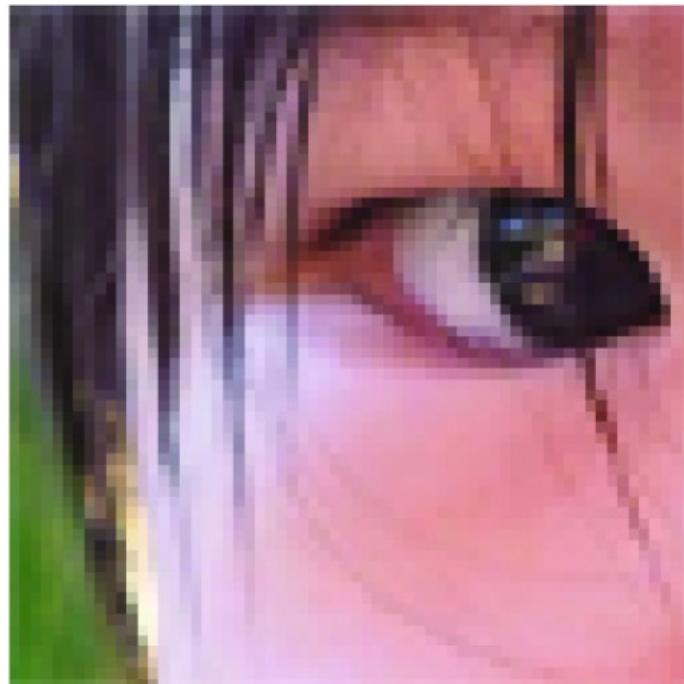


- Fourier transform of triangle filter is the **sinc²** function,
 - so multiplying the signal's spectrum by it introduces high-frequency artifacts



[Image source](#)

Bilinear interpolation closeup



[Image source](#)

Why else should you care?

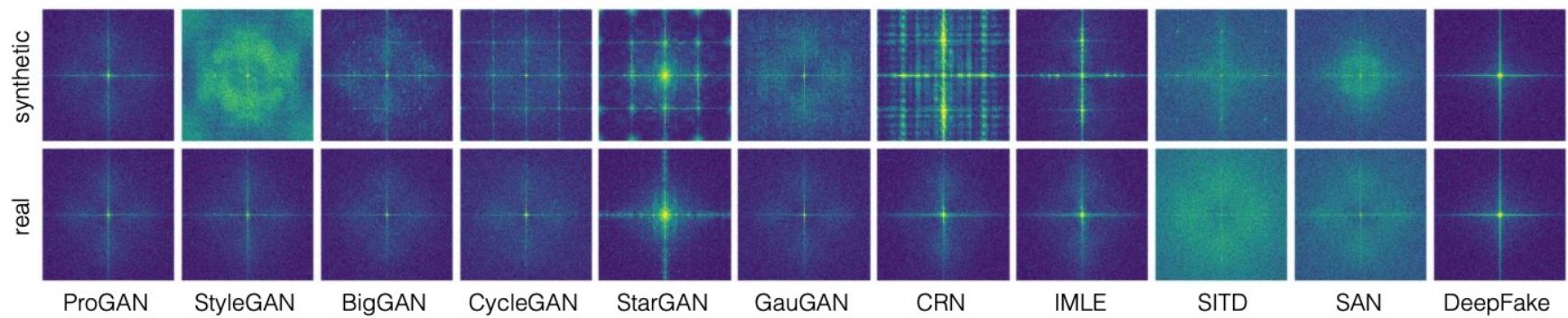
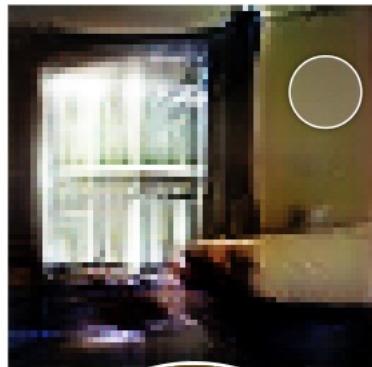
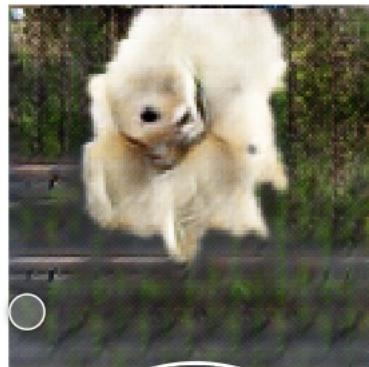
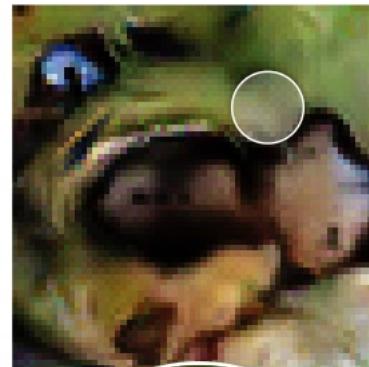
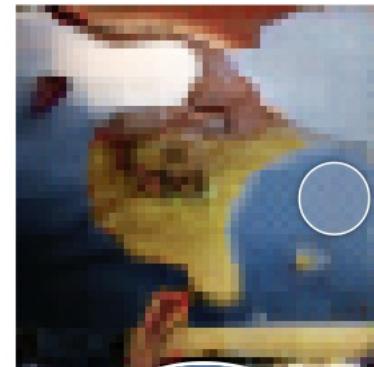
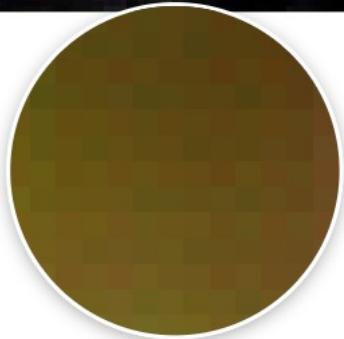
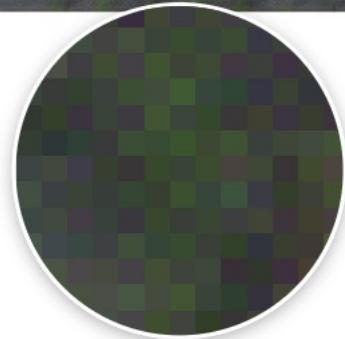


Figure 7: **Frequency analysis on each dataset.** We show the average spectra of each high-pass filtered image, for both the real and fake images, similar to Zhang *et al.* [50]. We observe periodic patterns (dots or lines) in most of the synthetic images, while BigGAN and ProGAN contains relatively few such artifacts.

Why else should you care?

Checkerboard and repetition artifacts in GAN-generated images



Radford, et al., 2015 [1]

Salimans et al., 2016 [2]

Donahue, et al., 2016 [3]

Dumoulin, et al., 2016 [4]

<https://distill.pub/2016/deconv-checkerboard/>

Things to think about...

12.7. Check that $\int g(u) \mathbf{sample}_{2D}(f) du = \sum_{ij} f(i, j)g(i, j)$.

12.8. Section 22.6 has: "This definition yields a model which behaves well for integrals. In particular,

$$\int g(u) \mathbf{sample}_{2D}(f) du = \sum_{ij} f(i, j)g(i, j)$$

which is the best approximation to the integral that you will get if you know $f(u, v)$ only at integer points." Explain.

12.9. Write an expression for what you would get if you convolve $\mathbf{sample}_{2D}(\mathcal{I})$ with $g(x, y)$, then sample the result.

12.10. Write an expression for what you would get if you convolve \mathcal{I} with $\mathbf{sample}_{2D}(g)$, then sample the result.

12.11. Section 12.2.3 has: "convolving a function with a shifted δ -function merely shifts the function". Show this is true.

12.12. Section 12.2.4 has: "If the sampled image is downsampled by two, for example, the copies now have centers on the half-integer points in u, v space." Explain.