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Sampling in 2D
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FIGURE 7.4: Sampling in 2D takes a function and returns an array; again, we allow
the array to be infinite dimensional and to have negative as well as positive indices.



Modelling a sampled function

12.2.1 Modelling a Sampled Function

A crucial step is a reasonable model of a sampled function. Passing from a contin-
uous function—Ilike the irradiance at the back of a camera system—to a collection
of values on a discrete grid —like the pixel values reported by a camera—is referred
to as sampling. Sampling must lose information about the original function (for
example, see Figure 3.4). Accounting for what is lost requires building a model of
the sampling process quite carefully.
Write
sampleyp (f)

for an operation that takes a continuous function in 2D and returns a sampled
version. The sampled version should represent the values of f at all integer points
(you can get any other uniform grid with a scale). It is highly desirable that

sample,(f) produce a result that is compatible with integration. In particular,
that
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Modelling a sampled function

to the extent possible for any g(u). Recall the definition of the ¢ function in 2D
(Definition 11.3). It turns out that the right choice for sample,(f) is

sample,,(f) = Z f(i,5)0(x =i,y — j)

The grid is infinite in each dimension to avoid having to write ranges, etc. (Fig-
ure 12.2). The ¢ function is a conceptual device to make the mathematical plumbing
work properly. There is no need to place one at each sample function in an array
inside your programs (and you can’t — you’d have to have an opinion about the
value of §(0), which isn’t going to work out). This definition yields a model which
behaves well for integrals. In particular,

/ gwsanple,(f)du = 3 1(0,7)g(i. )



Interpolation is by convolution

Recall the interpolate of Section 3.1 had the form

I(ZC,y) — Zzljb@: _Zvy _])
,J

Here b is some function with the properties 6(0,0) = 1 and b(u,v) = 0 for v and v
any other grid point. This is linear and shift invariant (exercises ) so it must
be a convolution. The way to see the convolution is to use the model of sampling,
above. This exposes the convolution in interpolation. Check that

sample,(Z) xb = //ZIijé(x —u—1,y —v— J)b(u,v)dudv
(%]

= ZIij//(S(a:—u—i,y—v—j)b(u,v)dudv
ij

= ZI@'jb(x — i,y — j) from the property of a ¢ function
i,J



The FT of a sampled signhal

F(sampleyp (f(r,y))) = F (f(lwyﬂ Z Z 0(x — i,y — j) >>

1—=—00 J=—00

= F(f(x,y ({ S_‘ f d(x — i, y—ﬂ})

= Y FHw—iv ),

1——00




The FT of a sampled signhal
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Sampling
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Sampling

* Ifthe magnitude blobs
overlap, you can’t
reconstruct from samples

e Cutting out won’t work —
you’ll get some information
from a different frequency
that aliases

* Nyquist’s theorem
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Conseguences

* Nyquist limits aren’t really viable

* Apply the convolution theorem

* Aboxin FT magnitude space is a filter with infinite
support (and you can’t make one of those)

* You’re forced to choose a filter that is low pass,
but isn’t perfect
* the choice has consequences
 Gaussianis such afilter
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Mystery 2

* Why can downsampling sometimes lead to
aliasing?
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The downsampling mangles the Fourier Transform magnitude
spectrum UNLESS you smooth by enough; and if you do, you lose
some information



Mystery 2 SOLVED

* Why can downsampling sometimes lead to
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*The downsampling mangles the Fourier Transform
maghnitude spectrum UNLESS



Analyzing interpolation methods

* Perfect reconstruction requires convolution
with a sinc filter in the spatial domain,

* whichis bad because sinc has infinite support

* |[nstead, simpler reconstruction (interpolation)
methods are typically used
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Analyzing interpolation methods

* Linearreconstruction: convolve with triangle

filter:
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 Fourier transform of triangle filter is the sinc?

function,

* so multiplying the signal’s spectrum by it introduces

high-frequency artifacts
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https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html

Bilinear interpolation closeup



https://cs184.eecs.berkeley.edu/sp19/lecture/5-50/texture-mapping

Why else should you care?

synthetic

ProGAN StyleGAN BigGAN CycleGAN  StarGAN GauGAN IMLE SITD DeepFake

real

Figure 7: Frequency analysis on each dataset. We show the average spectra of each high-pass filtered image, for both the real and fake
images, similar to Zhang et al. [50]. We observe periodic patterns (dots or lines) in most of the synthetic images, while BigGAN and
ProGAN contains relatively few such artifacts.

S.-Y. Wang et al. CNN-generated images are surprisingly easy to spot... for now. CVPR 2020



https://arxiv.org/pdf/1912.11035.pdf
https://arxiv.org/pdf/1912.11035.pdf
https://arxiv.org/pdf/1912.11035.pdf

Why else should you care?

Checkerboard and repetition artifacts in GAN-generated images

Radford, et al., 2015 [1] Salimans et al., 2016 [2] Donahue, et al., 2016 [3] Dumoulin, et al., 2016 [4]

https://distill.pub/2016/deconv-checkerboard/
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Things to think about...

12.7. Check that [ g(u)sampleyp (f)du =}, f(i,7)g(i, ).
12.8. Section 22.6 has:”This definition yields a model which behaves well for inte-
grals. In particular,

[ stwsanprens (Hdu = 3 . )ali. )

]

which is the best approximation to the integral that you will get if you know
f(u,v) only at integer points.” Explain.

12.9. Write an expression for what you would get if you convolve sample,, (Z) with
g(x,vy), then sample the result.

12.10. Write an expression for what you would get if you convolve Z with sample, ) (g),
then sample the result.

12.11. Section 12.2.3 has:”convolving a function with a shifted J-function merely
shifts the function”. Show this is true.

12.12. Section 12.2.4 has: “If the sampled image is downsampled by two, for example,
the copies now have centers on the half-integer points in u, v space.” Explain.



