

Representing lines and planes

D.A. Forsyth,
University of Illinois at Urbana Champaign

Never do this without good reason

Useful Fact: *Do not represent a line as the set of points (x, y) where $y = ax + b$ or a plane as the set of points (x, y, z) where $z = ax + by + c$. Vertical lines – where x is constant – and vertical planes – where $ax + by + c$ is a constant – cannot be represented in this form.*

There are missing lines!

Lines and planes

Useful Fact: *Represent a line as the set of points $\mathbf{x} = (x_1, x_2)^T$ where $ax_1 + bx_2 + c = 0 = \mathbf{a}^T \mathbf{x} + c$ and a plane as the set of points (x_1, x_2, x_3) where $ax_1 + bx_2 + cx_3 + d = 0 = \mathbf{a}^T \mathbf{x} + d$. A tuple (a, b, c) corresponds to a line as long as not all elements are zero. A tuple (a, b, c, d) corresponds to a plane, as long as not all elements are zero.*

Useful Fact: *The line represented by $(\lambda a, \lambda b, \lambda c) = (\lambda \mathbf{a}, \lambda c)$ is the same as the line represented by $(a, b, c) = (\mathbf{a}, c)$ for $\lambda \neq 0$. This means that many tuples represent the same line. Choosing to avoid this ambiguity by requiring one element of the tuple to 1 means that you cannot represent some collection of lines. For example, the family $(u, v, 1)$ omits any line through the origin* **exercises**

A convenient repn for lines

Useful Fact: *If you represent a line by the tuple $(\cos \theta, \sin \theta, r)$, where $0 \leq r < 0$ and $0 \leq \theta < \pi$, then all lines are represented, and there is exactly one (θ, r) that corresponds to a given line* **exercises**. For this representation, r is the perpendicular distance from the line to the origin and θ is the orientation of the line (meaning that the vector $(\sin \theta, \cos \theta)^T$ points along the line).

Distance to a line, normal

Useful Fact: *The perpendicular distance from a point \mathbf{x} to a line (\mathbf{a}, c) is given by*

$$\text{abs}(\mathbf{a}^T \mathbf{x} + c) \quad \text{if} \quad \mathbf{a}^T \mathbf{a} = 1.$$

In my experience, this fact is useful enough to be worth memorizing.

Useful Fact: *The normal of a line represented as $(a, b, c) = (\mathbf{a}, c)$ is given by*

$$\frac{\mathbf{a}}{\sqrt{\mathbf{a}^T \mathbf{a}}}$$

Things to think about...

- 13.1. What is the normal of a plane represented by (a, d) ?
- 13.2. Why does the family of lines given by $(u, v, 1)$ omit any line through the origin?
- 13.3. What lines are missing from the family of lines given by $(1, v, w)$?
- 13.4. You are given a line (a, b, c) . Show there is exactly one (θ, r) in $0 \leq r < 0$ and $0 \leq \theta < \pi$ so that the line can be represented as $(\cos \theta, \sin \theta, r)$.
- 13.5. You are given a line (a, b, c) . Show there are exactly two (θ, r) in $0 \leq r < 0$ and $0 \leq \theta < 2\pi$ so that the line can be represented as $(\cos \theta, \sin \theta, r)$. Interpret these two solutions.