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Robust estimators

e General approach: find model parameters 6 that
minimize

Zp(,(r(xi; 0))

r(x; 6): residual of x; w.r.t. model parameters 6
eg for line, 0 =(ab,d)

residual r(x;60) = (ax; + by, — d)
P robust function with scale parameter o

Noticethat  p,(u) = u”2 would give the original least squares loss
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The Huber loss

The Huber loss uses Scale
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which is the same as u?/2 for —o < u < o, switches to |u| for larger (or smaller)
o, and has continuous derivative at the switch. The Huber loss is convex (meaning
that there will be a unique minimum for our models) and differentiable, but is not
smooth. The choice of the parameter o (which is known as scale) has an effect on
the estimate. You should interpret this parameter as the distance that a point can



Choosing the scale: Just right

The effect of the outlier is minimized



Choosing the scale: Too small
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The error value is almost the same for every
point and the fit is very poor



Choosing the scale: Too large

Behaves much the same as least squares



Finding the line

Now the line i1s chosen by minimizing

(1/2) Z p(r(x,0);0)

with respect to # = (a1, az, c), subject to a? + a3 = 1. The minimum occurs when
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Finding the line - I

Here A is a Lagrange multiplier and the derivative 3% is evaluated at r(x;,#), so it
is a function of #. Now notice that
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Now [r(x;, 0)]2 is the squared error. At the true minimum 9, writing

ap
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(where the derivatives are evaluated at that é), then
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Influence functions
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|dea — iteratively reweighted least
squares

e Start with initial line
* get weights, scale from line

* |terate:
* estimate line using weights, scale
* estimate scale using line
* estimate weights using scale, line

* We *know™ that one stationary point is the true minimum
* No other guarantees I’m aware of, but quite well behaved



Starting IRLS

* |[terate:
* |nitial line:
* Draw two points at random from dataset
* Pass line through them

* Fitline with IRLS

* Use the best you encounter



FIGURE 12.7: Robust losses can control the influence of outliers. Blue points lie
on a line, and have been perturbed by noise; red points are outliers. The red line
shows a starting line, obtained by drawing a small random sample from the dataset,
then fitting a line; the gray lines show iterates of IRLS applied to a Huber loss
(later iterates are more opaque; scales are estimated as in the text). The procedure
converges from a range of start points, some quite far from the “true” line. Notice
how each start point results in the same line.



IRLS isn’t perfect...

Few outliers Many outliers

FIGURE 12.8: Robust losses can fail, particularly when distant points still have some
wetght or if there are many outliers. Left: a bad start point leads to a bad line;
center left: on the same data set, quite a good start point still converges to a bad
line. Here there are few outliers, but they are far from the data and they contribute
a significant weight to the loss. When there are many outliers, this effect worsens.
Because each outlier still contributes a signficant weight to the loss, even a good
start fails (center right). A poor start (right) also fails, and produces the same
line as the good start — in fact, most starts end up close to this line. Again, blue
points lie on a line, and have been perturbed by noise; red points are outliers; the
red line shows a starting line, obtained by drawing a small random sample from
the dataset, then fitting a line; the gray lines show iterates of IRLS (later iterates
are more opaque).



Things to think about...

14.3. Why is it fairly obvious that there should be local minima for a line fit using
a robust loss?



