Denoising with filters

D.A. Forsyth,

University of lllinois at Urbana Champaign

Some slides adapted from
Svetlana Lazebnik, who adapted from Alyosha Efros, Derek Hoiem



https://inst.eecs.berkeley.edu/~cs194-26/fa21/
https://inst.eecs.berkeley.edu/~cs194-26/fa21/

A crucial property of images

*Pixels are like their neighbors
(mostly, for most pixels)

* Imagine you wish to denoise an image. You could do so by
averaging neighbors (a filter!).



Smoothing With box filter revisited




A crucial property of images

*Pixels are like their neighbors
(mostly, for most pixels)

* Imagine you wish to denoise an image. You could do so by
averaging neighbors (a filter!). Weighting the neighbors so nearby
neighbors get heavier weights is a good move.



Smoothing

* To eliminate edge effects, weight contribution of neighborhood
pixels according to their closeness to the center
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Adapted from D. Fouhey and
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Gaussian filters

o =1 o= 2 o =4 o =28

Filter size: 21 X 21

Adapted from D. Fouhey and J. Johnson
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Choosing filter size

e Rule of thumb: set filter width to about 6o (_caé)tures 99.7% of the

energy) o = 8 g
Width = 21 Width = 43

Too small! A bit small (might be OK)

Adapted from D. Fouhey and J. Johnson
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Gaussian vs. box filtering

Original Unweighted average Gaussian filtered




(Gaussian noise

The simplest model of image noise is the additive stationary Gaussian noise (or
Gaussian noise) model, where each pixel has added to it a value chosen indepen-
dently from the same normal (Gaussian — same Gauss, different sense) probability
distribution. This distribution almost always has zero mean. The standard devi-

ation 1s a parameter of the model. Figure 4.6 shows some examples of additive
stationary Gaussian noise.



Gaussian smoothing of Gaussian noise

Kernel sigma ->
Onginal _ 1 ‘ 2 | 3 4




Smoothing by how much?

The choice of o (or scale) for the Gaussian follows from the following consid-
erations:

e If the standard deviation of the Gaussian is very small—say, smaller than one
pixel—the smoothing will have little effect because the weights for all pixels
off the center will be very small.

e For a larger standard deviation, the neighboring pixels will have larger weights
in the weighted average, which in turn means that the average will be strongly
biased toward a consensus of the neighbors. This will be a good estimate of a
pixel’s value, and the noise will largely disappear at the cost of some blurring.

e Finally, a kernel that has a large standard deviation will cause much of the
image detail to disappear, along with the noise.



Poisson noise

* For each pixel location, flip a biased coin
* ifit comes up heads, move on

* if it comes up tails, flip a fair coin
 ifthatis heads, pixel -> full bright
e tails, pixel->full dark

* Variants are possible

* Models device damage, manufacturing failures, some kinds of
transmission error, etc.



Smoothing Poisson noise with a gaussian filter

Kernel sigma ->
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The median filter

* N_{ij} = median(Neighborhood(O_{ij}))

* THIS ISN’T LINEAR!

* (checkyou’re sure of this)



Smoothing Poisson noise with a median filter

Window size ->
Original
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Gaussian smoothing of Gaussian noise

Kemnel sigma ->
Original 1 2 | 3




Application: derivative of Gaussian filters

Because convolution is associative, smoothing an image and then differentiating
it is the same as convolving it with the derivative of a smoothing kernel. First,
differentiation is linear and shift invariant. This means that there is some kernel
that differentiates. Given a function I(z,vy),

ol
% == K(@/Bz) * 1.

Write the convolution kernel for the smoothing as S. Now
aS
(K(o/0z) * (S * 1)) = (K(o/02) ¥ S) * I = (5-) * I.

Usually, the smoothing function is a gaussian, so an estimate of the derivative can
be obtained by convolving with the derivative of the gaussian (rather than convolve
and then differentiate), yielding

dg, 1 —T x? 4+ y?
dr  2mo? lﬁ] P ( 202 )
99, 1 —y x? + y?
B = no? [w] exp‘( 302 )



SPOT THE TYPO!
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Think about this...

6.13. This exercise explores smoothing of additive Gaussian noise. Write Z for an
image whose 7, j’'th entry is Z;;. Form N;; = Z;; + 0&;;, where &;; is an in-
dependent, identically distributed sample from a standard normal distribution
(this has mean 0 and standard deviation 1). This means that, at each pixel in
the image, you draw a sample from a standard normal distribution, scale it by
o, then add it to the pixel value. Write K for some (2k + 1) x (2k + 1) filter
kernel, and = for the noise image (i.e. the image whose 7, j'th component is
§ij)-

(a) Form M = K x Z. Show that each pixel of this image is a sample of
a normal distribution whose mean is 0 and whose standard deviation is
> j K?j. What condition on k ensures every pixel of M is independent
of every other? For given k, characterize the pixels that are guaranteed
to be independent of one another? What is the covariance of M;; and
Mitr j+s for given r and s?

(b) Use the results of the previous exercise to argue that Gaussian smoothing
suppresses Gaussian noise.



