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Image filtering

* Roughly speaking, replace image value at x with some
function of values in its spatial neighborhood N (x):

gx) = T(f(N(x)))

i ST

« Examples: smoothing, sharpening, edge detection, etc.




Sliding window operations

e Slide a fixed-size window over the
image and perform the same simple
computation at each window
location

e Example: reduce image noise

» Take the average of pixel values in
each window

* More generally, we can take a weighted
sum where the weights are given by a
filter kernel
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FIGURE 3.1: To compute the value of N' at some location, you shift a copy of M
(the flipped version of W) to lie over that location in I; you multiply together the
non-zero elements of M and I that lie on top of one another; and you sum the
results.



Image filtering example




Convolution

Procedure: 5.1 Convolution

Convolution uses a source image S, and forms a new image N from
that source. The 7, j’th pixel in N is now a weighted average of a
(2k —1) x (2k — 1) window of pixels in S, centered on 7, j. The weights
are in a mask M and produce N from the original image and the mask,
using the rule

Mj — Z Iz'—u,j—'vMu'v-

Convolution is sometimes written

N=MxT.




Filtering

Procedure: 5.2 Filtering

Filtering computes

Mj — E Iz'+u,j+vMuv
uv
This 1s sometimes written

N = filter(M,I).

Convolution and filtering differ only by how the mask is indexed. The difference mattersin
some contexts, but not (much) to us (and is widely ignored).




Shifting

Define the operation shift(Z,m,n) which shifts an image so that the 7, j'th pixel
is moved to the i — m, 7 — n’th pixel, so

shift(Z,m,n)ij = LZi—m j—n-

Ignore the question of the range, as shift just relabels pixel locations.



Shift invariant linear systems

e Superposition: the response to the sum of stimuli is the sum of the indi-
vidual responses, so

R(f +g) = R(f) + R(9);

e Scaling: the response to a scaled stimulus is a scaled version of the response
to the original stimulus, so

R(kf) = kR(f).

An operation that exihibits superposition and scaling is linear.

e Shift invariance: In a shift invariant linear system, the response to a trans-
lated stimulus is just a translation of the response to the stimulus. This
means that, for example, if a view of a small light aimed at the center of the
camera is a small, bright blob, then if the light is moved to the periphery, the
response is same small, bright blob, only translated.



Shift invariant linear systems

A device that is linear and shift invariant is known as a shift invariant linear system.
The operation represented by the device is a shift invariant linear operation.

Some systems accept a continuous signal and produce a continuous signal. A
natural example is a lens, which takes a pattern of light and produces a pattern of
light. Others accept a discrete signal (a vector; an array) and produce a discrete
signal. A natural example would be smoothing with a Gaussian. Either kind of
system can be linear, and either kind of system can be shift invariant. It turns
out that any operation that is shift invariant and linear can be represented by a
convolution, and this is true for either continuous or discrete signals.



Properties of convolution

* Linearin
* image
* mask (or kernel)

* Shift invariant
* assuming image is infinite or infinitely padded w/ zeros

 Associative
* (f*g)*h=f*(g*h)



Properties of convolution

Define the operation shift(Z,m,n) which shifts an image so that the 7, j'th pixel
is moved to the i —m, j — n’th pixel, so

shift(Z,m,n)ij = Li—m j—n-

Ignore the question of the range, as shift just relabels pixel locations.



Padding and edges

2utl X 2v+1 M-2u X N-2 v
kemnel valid region

T MXN 2u+1 X 2v+1 P;fidmg
image kernel strip



Padding options

 Pad with:
» Zeros
 Wrap around
* Copy edge
* Reflect across edge



Note: Filtering vs. “convolution”

e |[n classical signal processing terminology, convolution is filtering
with a flipped kernel, and filtering with an upright kernel is known
as cross-correlation

* Check convention of filtering function you plan to use!

Filtering or “cross-correlation” “Convolution”
(Kernel in original orientation) (Kernel flipped inx andy)

Adapted from D. Fouhey and J. Johnson


https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Practice with linear filters
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Practice with linear filters

Original One surrounded by Filtered

zeros is the identity (no change)
filter

Source: D. Lowe



Practice with linear filters
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Practice with linear filters

Original Shifted left
By one pixel

Source: D. Lowe



Practice with linear filters

Original

Source: D. Lowe



Practice with linear filters
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Practice with linear filters
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Practice with linear filters
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Sharpening filter: Accentuates
differences with local average

(Note that filter sums to 1)

O

Sharpened

Source: D. Lowe



Sharpening

before after

Source: D. Lowe



Source

S. Gupta



Gradients with finite differences

For an image 7, the gradient is

0L 0T
VI —\5 »45 T?
Ox’ Jy
which we could estimate by observing that
oL . I(x+ox,y) —I(x,2
— = lim ( j) ( j) ~ 'H—lj_Iz'j°
dr  6z—0 ox ’ ’

This means a convolution with
—1 1
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Think about this...

5.1. Show that convolution is linear in the image, so

Wx(EL) = kE(W=xTI)
Wx(ZT+T) = WHxIT+WxJ.

5.2. Show that filtering is linear in the image.
5.3. Show that convolution is linear in the mask, so

(kW)xT = k(W=xTI)
W+V)«xZT = WxIT+V=xT

5.4. Show that filtering is linear in the mask.
5.5. Show that convolution is associative, so

Wx(V*xIT)=W=xV)xT

5.6. Show that filtering is associative.
5.7. Show that convolution is shift-invariant, so

W x (shift(Z,m,n)) = shift(W 7, m,n)

5.8. Show that filtering is shift-invariant.
5.9. Section 5.1.3 has “The outer boundaries of an image mean that, in practice,
convolution is not shift-invariant. 7 Explain



