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Filters are dot products
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FIGURE 3.1: To compute the value of N' at some location, you shift a copy of M
(the flipped version of W) to lie over that location in I; you multiply together the
non-zero elements of M and I that lie on top of one another; and you sum the
results.



Filters as pattern detectors

6.1.1 Pattern Detection by Convolution

The properties of a dot product explain why a convolution is interesting: it can
be used as a very simple pattern detector. Recall that if u and v are unit vectors,
then u’v is maximized when u = v and minimized when u = —v. Interpreting u
as a vector of kernel weights and v as a vector of image values suggests the rough
rule of thumb: filters respond most strongly to image patterns that look like the
filter kernel.

The mean of v presents an issue. Write 1 for a vector of ones. Then u” (v +
cl) = uTv + cu”1, so you can increase or decrease the response of the filter by
adding a constant to the image window unless ul1 = 0. This suggests that the
best pattern detection is obtained by using a filter with zero mean. If u”1 = 0,
the magnitude of u just changes the scale of the response to the filter. The local
maxima (or minima) of the response are what is important — these signal where a
pattern is present — and so the magnitude of u doesn’t really matter.

Useful Fact: A zero-mean filter is a pattern detector that responds
positively to 1mage patches that look like it, and negatively to patches that
look like it with a contrast reversal
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Normalized convolution

If the mean of the kernel is zero, scaling the image will scale the value of the
convolution. If you test the convolution value against a threshold to find a pattern,
you will find more instances when the image gets brighter, and fewer when it gets
darker, which is usually inconvenient. One strategy to build a somewhat better
pattern detector is to normalize the result of the convolution to obtain a value that
1s unaffected by scaling the image. For example, smooth the image with a Gaussian
to obtain G, then form
_/\[z. .

B Gij + €

(remember, N;; was obtained by convolving the image with some zero-mean kernel).
Here G is an estimate of how bright the image is. Most images have all positive

pixels (a zero pixel value is usually a sign of camera problems) so using e to avoid
dividing by zero isn’t essential. But note that € > 0 causes the score to saturate if
the image is very dark. This makes sense because a group of very dark pixels is more
likely to have a pattern present through thermal noise. The process that produces C
1s known as normalized convolution, and produces an improvement in the detector.
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RelLUs

Write W for a kernel representing some pattern you wish to find. Assume that W
has zero mean, so that the filter gives zero response to a constant image. Notice
that N’ = WxZ is strongly positive at locations where Z looks like W, and strongly
negative when Z looks like a contrast reversed (so dark goes to light and light goes
to dark) version of W. Usually, you would want to distinguish between (say) a light
dot on a dark background and a dark dot on a light background. Write

relu(z) = x foraxz>0
] 0 otherwise

(often called a Rectified Linear Unit or more usually ReLU). Then relu(W xI) is
a measure of how well YW matches Z at each pixel, and relu(—W % Z) is a measure
of how well WW matches a contrast reversed Z at each pixel. The ReLU will appear
again.
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Multi-channel convolution

The description of convolution anticipates monochrome images, and Figure 4.3
shows filters applied to a monochrome image. Color images are naturally 3D ob-
jects with two spatial dimensions (up-down, left-right) and a third dimension that
chooses a slice or channel (R, G or B for a color image). Color images are sometimes
called multi-channel images. Multi-channel images offer a natural for representa-
tions of image patterns, too — two dimensions that tell you where the pattern is
and one that tells you what it is. For example, the results in Figure 4.3 can be
interpreted as a block consisting of eight channels (four patterns, original contrast
and contrast reversed). Each slice is the response of a pattern detector for a fized
pattern, where there is one response for each spatial location in the block, and so
are often called feature maps (it is entirely fair, but not usual, to think of an RGB
image as a rather uninteresting feature map).



Multi-channel Convolution

For a color image Z, write Z, ;; for the £’th color channel at the 4, j'th location,
and K for a color kernel — one that has three channels. Then interpret N' =7 x K
as

Afij — E Ik,i—u,j—vlckuv

kuv

which is an image with a single channel. This A is a single channel image that
encodes the response to a single pattern detector. Much more interesting is an
encoding of responses to multiple pattern detectors, and for that you must use
multiple kernels (often known as a filter bank). Write IV for the I’th kernel, and
obtain a feature map

Niij = Z Ik,i—u,j—v}c](gliv-

kuv



Kernel block 2

Feature
map 2

Kernel block 1

FIGURE 4.4: On the left, two kernels (now 3D, as in the text) applied to a set of
feature maps produce one new feature map per kernel, using the procedure of the
text (the bias term isn’t shown). Abstract this as a process that takes an x X y X d

block to an X XY x D block (as on the right ).



Representing Images with Filter Banks

Filter Positive response




Representing Images with Filter Banks
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But which filters should | use?

e Up till about 2012:

* choose some, mostly spots and bars

e After 2012:

* lots; choose ones that work well in your application using an optimization
procedure



Think about this...

6.2.
6.3.
6.4.
6.5.

6.6.

6.7.
6.8.
6.9.
6.10.
6.11.
6.12.

Why is a non zero-mean filter a poor choice of pattern detector?

Why is a normalized convolution useful?

Why is a normalized convolution useful?

Why does “subtracting a small constant from the response before applying the
ReLU” help suppress small responses to a pattern detector?

Why does “subtracting a small constant from the response before applying the
ReLLU” (Section 6.1.3) help suppress small responses to a pattern detector?
Is normalized convolution linear in the convolution kernel?

Is normalized convolution linear in the image?

Is multichannel convolution linear in the convolution kernel?

Is multichannel convolution linear in the image?

Can you normalize multichannel convolution?

Can you construct a zero-mean kernel for multichannel convolution?



