Denoising
considerations

D.A. Forsyth,

University of Illinois



Denoising Images using
Optimization

This chapter uses a master recipe for denoising. Write N for a noisy image,
and think of denoising as finding a denoised image D that is (a) close to N and (b)
more like a real image. Write

C(D) = [distance from D to N]+ [unrealism cost for D]
= [data term| + [penalty term]

and choose a D that minimizes this cost function. Methods differ mainly by the
penalty term, which has a significant effect on how hard the optimization problem
is. This framework leads to very strong denoising methods, at the cost of solving
what can be a nasty optimization problem.






Colorimages - R, G, and B are
strongly correlated . .

P s i | f e B2
'//.. 2 T = P

FIGURE 7.1: RGB color components are heavily correlated, as you can see by looking
at 1mages where only one component has been smoothed.. The top row shows the
R, G, and B components of the color image at the left. The bottom row shows
color 1mages obtained by smoothing one component, then recombining all three.
Notice that smoothing any of the R, G, B components alone leads to odd color
effects at edges (G is particularly bad). Image credit: Figure shows my photograph
of a building in downtown Manaus.



LAB and smoothing

L A B




FIGURE 7.2: Decorrelating the components of a color image before smoothing is
important, but one does not need to do this on a per-image basis. The top row
shows the L, A, and B components for this image on the right. Because these
components can be negative, they have been scaled and shifted so that a zero value is
mid gray, the largest value is bright and the smallest is dark (the same scale has been
applied to each component so you can see relative sizes). The bottom row shows
color images obtained by smoothing one component, then recombining all three.
Smoothing L results in a blurry color image; smoothing A or B alone largely has no
effect. This means one can use sophisticated methods on the L component and just
smooth the A and B components. Image credit: Figure shows my photograph of a
building in downtown Manaus.



This means you can

Convert to LAB

Apply sophisticated denoising to L
Smooth A, B
Convert back



Evaluation: PSNR

One standard evaluation statistic is the mean PSNR or peak signal-to-noise
ratio. For each pair (N,C) of noisy version - clean version, first denoise the noisy
image to get D. Now compute the PSNR for the pair (D,C), using

nax e
L]
\/Zij (Dij o Cij)2

j

psnr(D,C) = 20log

and average that PSNR over pairs. The PSNR has some good properties: as D
gets closer to C, the PSNR gets larger; and psnr(sD, sC) = psnr(D,C) for s > 0
(so you can’t change the PSNR by scaling the images). You need to know C to
compute the PSNR, so you can only use PSNR to evaluate if you know the right
answer. In some applications, versions of the original image that are uniformly



Scaled PSNR

slightly brighter or slightly darker might be acceptable, but the PSNR will penalize
a method that can’t estimate the brightness of the ground truth image. In these
situations, one can use

max
1]

min '
s \/sz (sDij — Ciz)”

Ci;

psnr(D,C) = 201log




SSIM

* PSNR doesn’t account for small shifts, etc

An ideal evaluation metric should not be seriously affected by shifts like this.
A natural construction is to compare summary properties of windows of pixels
rather than comparing pixels. This construction leads to the SSIM or structural
similarity index metric. The clean image and the denoised image are broken into
quite small overlapping windows; summary statistics for these windows are com-
puted and compared, with a metric that is quite robust to changes in intensity; and
the comparison is averaged over all windows. Implementations of SSIM appear in

most API’s.



LPIPS

Human observers have a variety of preferences that SSIM does not fully ac-
count for. For example, humans like sharp edges without ringing but can be re-
laxed about whether the edge is in the right place. As another example, humans
are surprisingly good at perceiving lines, and dislike edges that are close to, but
not on, a line. The LPIPS or Learned Perceptual Image Patch Similarity met-
ric is an attempt to deal with this. The clean image and the denoised image are
broken into overlapping windows; deep network features are computed for win-
dows; a weighted difference is computed for these features; and the comparison
is averaged over all windows. The features are learned using procedures quite
like that of Chapters 15 and 16. The reference Implementation of LPIPS is at

https://github.com/richzhang/PerceptualSimilarity, and many APIs offer
LPIPS evaluation.



Think about this...

7.1.

7.2.

7.3.

7.4.

Differentiation is linear; you can represent an image as a vector; and you can
represent an estimate of its gradient as a vector. Does this guarantee the
existence of a matrix that estimates the gradient (as a vector) from an image
(as a vector)?

Write n for an N x N image represented as a vector, and D, for a matrix that
estimates the z-denivative of this vector. What fraction of the entries of D,
are zero?

Section 7.2.5 says: “ Notice that the map from blurry image b to deblurred
immage d 1s linear in b, and should be shift invariant, too.” Explain. This
remark implies that you can deblur with a convolution. Why?

Section 7.2.5 says: “ Notice that the map from blurry image b to deblurred
image d 1s linear in b, and should be shift invarant, too.” This remark imples
that you can deblur with a convolution. Why? What 1s the kernel?



