Denoising images with
optimization

D.A. Forsyth

University of Illinois

Denoising Images using
Optimization

This chapter uses a master recipe for denoising. Write N for a noisy image,
and think of denoising as finding a denoised image D that is (a) close to N and (b)
more like a real image. Write

C(D) = [distance from D to N]+ [unrealism cost for D]
= [data term| + [penalty term]

and choose a D that minimizes this cost function. Methods differ mainly by the
penalty term, which has a significant effect on how hard the optimization problem
is. This framework leads to very strong denoising methods, at the cost of solving
what can be a nasty optimization problem.

Denoising by weighted least
squares - |

For this Chapter, the data term in the master recipe is

> (Dij — Nyy)*
ij
(the ssd of Section 3.4.2). A good reconstruction could smooth the image over
quite long scales in regions where C is constant. The reconstruction must preserve
edges, so the smoothing would need to be over very short scales at edge points.
Ideally, smoothing would be along an edge rather than across it. But C isn’t known
(otherwise there would be nothing to do). All this suggests that the penalty function
needs to look at gradients in D.

Denoising by WLS -

e Straighten
* noisy image N into vector n
* reconstructed image U into vector u

e Cost becomes

[u—n]" [u—n]

Denoising by WLS - I

e |dea:

* reconstructed image should have large gradients only
where there is strong evidence in support

* (version of ”pixels are like their neighbors”)

* Strong evidence:
* Use DOG filters to get smoothed gradient of noisy
image
* Where this is big, gradients in reconstruction should
be cheap

Denoising by WLS - |V

e Differentiation is linear, so can write matrices so
that gradient of u is given by

(o)

* What comes out is stacked x and y derivatives

Denoising by WLS -V

Now write A;(n), A,(n) for diagonal matrices of weights obtained from the
original image. Because these matrices are diagonal, think of them as producing
pixel by pixel weights on the cost of a derivative in D. So at a location where the
value of A, is small, D could have a large y-derivative, but at locations where the
value 1s large, D must have a small y-derivative.

1
» Weights could be |w; | + €

* Where w_i is either x ory derivative at i’th location,
epsis small

Denoising by WLS - VI

argmin
u

u—n] [u—n]+xa’ [DTATA,D, + DIATA,D,] u

I I

Be close to noisy image Have big derivatives only if good evidence

where the first term pushes d to be like n, the second term controls the derivatives of
d and A 1s some weight balancing the two terms. Write £ = ['DZ.“.AZ:AIDE — DZ.AZAyDy] :
then solving this problem is a matter of solving

FAd=(Z+AL)d=n

Ie

riginal
X N 1

Reconstructions

Noisy version

Residuals

Norms - |

C(D) = [distance from D to N+ [unrealism cost for D]

= [data term] + [penalty term]

Q: how to measure the "size” of the penalty?

v
argmin
u

u—n]" [u—n]+ A\’ D] ALAD, + Dg.AgAyDy} u

Norms -lI

The L2 norm, defined by

[vie = Vv'y.
arg;mn u—n]' [u—n]+ " [DIATA,D, + D] Al A,D,]u

A

This is squared L2 norm (of what?)

Norms - |l

argmin
u

u—n] [u—n]+xa’ [DTATA,D, + DIATA,D,] u

Weighted least squares penalized the squared L2 norm of the weighted gradient.
Generally, a vector with small L2 norm can have many small, but non-zero, ele-
ments. This is because the square of a small number is very small, and the sum of
many very small numbers is still small. The weights in weighted least squares tend
to mitigate this, because small gradients have large penalty weights. Warning:It
is quite common to refer to the square of the L2 norm as the L2 norm. I will try
not to do this, because it’s wrong, but you’ll bump into this in the literature rather
often.

The L1 Norm

An alternative 1s to penalize the L1 norm of the gradients. The L1 norm of a

vector v 1s defined by
Ivh =Y Juil.
i

Behavior of L2 norm

A vector with small L1 norm will tend to have zero elements. You can see this by
comparing two cases. Write

u—g"u-gl+ Sulu

1

and notice that the u that minimizes Cy(u) is

1

L+ A%

Notice — even if lambda is very big, g ISN’T zero
(it’s just small)

Behavior of L1 norm

Now write
1 T
Ca(u) = 5 [u—g" [u—g] + Al uls
and think about the u that minimizes C7(u). The penalty term isn’t differentiable,
which creates some inconvenience, but it is a sum over elements of u. Now consider

the 2’th element of u. If g; is sufficiently large, then it is easy to show that

U; — i

14+ A
Now consider what happens when g; = A. If u; = 0, then the cost will be A\?/2, but
if u; = € > 0 where € is small, the cost will be (1/2)(A? + ¢2). This analysis implies
correctly that if —\ < g; < A, u; = 0. In turn, using an L1 norm as a penalty on
the gradients tends to cause the reconstruction to have many zero gradients

The L1 norm encourages g to have zeros in it!

Total variation denoising - |

In total variation denoising, the penalty is an L1 norm to the gradient. There
are a variety of ways of doing this. In one approach, one seeks

argmin 1

W glu- gl’ [u—g] + \[|Deufs + | Dyuly].

Note this cost function isn’t differentiable, but it is convex. The optimization
problem for this cost function is well understood, and is relatively easily managed
(though beyond our scope). However, you should notice that the penalty encourages
zeros In the x and y components of the gradient, which isn’t necessarily the same
as zero gradients. One could get a solution where the zeros in the & components
are not aligned with the zeros of the y components, so the penalty is biased against
some gradient directions but not others.

Total variation denoising - |l

An alternative formulation requires a bit more notation. Write d, ;(u) for the
1’th component of D,u, and so on. Then solve

argminl T
L plu—gl [u—gl+A

> \/d:%,i +d2,

which is also not differentiable. Solutions require rather more elaborate work than
solutions for the previous formulation, and tend to be somewhat slower, but are
not biased.

Deblurring - |

Denoising takes something that isn’t quite an image and finds an image that is very
like it. Many phenomena can produce something that isn’t quite an image. For
example, take an image and blur it. The result isn’t an image, but it is quite close
to one. Recall from Section 41.2 that blurring is a linear operation. Write t for the
true image in vector form, d for the deblurred estimate in vector form, b for the
observed image in vector form, and B for the linear operator that blurs. Assume B
is known, at least for the moment (exercises). Notice b is not exactly the blurred
image. At the very least, there is some error from the numerical representation,
and there might be some small noise present, too. Then

b=Bt+¢

(where £ is a vector of very small errors) and least-squares suggests choosing d that
minimizes
(Bd—b)" (Bd —b)

which would involve solving
B"Bd = B'b.

Deblurring - Il

(B"™B)"'B™b = (BTB)" BT [Bt +¢
— t+ (B7B) B¢

|

But this has some really big eigenvalues!

Regularization

There 1s a traditional procedure to handle very small eigenvalues in a matrix,
known as regularization. One seeks a minimum of

C(u) = (Bu—b)" (Bu—b)+ AuTu

by solving
(B"B+XT)d=B"b

MLS and TVD

C'(u) = [Term comparing Bu to b| + [Term evaluating realism of ul]

= [data term| + [penalty term]

I

Penalty term we used before for MLS or TVD

Blurred input

Regularized WLS

Blurred input

Ground truth
iy e

5e-2

Regularized

Think about this....

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

Section 7.2.6 says that it 1s harder to deblur a really blurry im:;se than it 1s to
deblur a slightly blurry image, because some eigenvalues of (B* B)™! are very
large and very hard to control. Explain.

Assume you know an image is blurred using a gaussian kernel, and you know
the o of the kernel. You could deblur using the convolution theorem. What
might go wrong if you do?

Assume you know an image is blurred using a gaussian kernel, and you know
the o of the kernel. The convolution theorem explains why it is much harder
to deblur a heavily blurred image than it is to deblur a lightly blurred image.
Explain.

Is the cost function

Ci(w) = 3 [u—g]” [u—g] + Alul:

differentiable?
Imagine you ignore the question of differentiability, and minimize

Ci(u) = 3 u— gl [u—g] +Alul:

by gradient descent. You will find the estimated solution you get does not
have many zeros 1n it, even though you are using an L1 norm. Explain what
happened.

Section 7.2.4 has: “However, you should notice that the penalty encourages
zeros in the z and y components of the gradient, which isn’t necessarily the
same as zero gradients.” Explain.

