

Computer Vision

Course webpage URL: <http://luthuli.cs.uiuc.edu/~daf>

And follow links

Vision group at Illinois

- **David Forsyth**
 - Fulton Watson Copp chair; Marr prize, 1993; 2 ex students with Marr prizes; IEEE Tech. Achievement, Fellow; ACM Fellow; EIC IEEE TPAMI; 4 patents

- **Jim Rehg**
 - HCESC director; multiple famous ex-students, best paper awards; 26 patents

- **Derek Hoiem**
 - best paper, CVPR 2006; ACM Doctoral Dissertation honorable mention; Sloan Fellow; PAMI-TC Young Researcher; major startup

- **Lana Lazebnik**
 - Microsoft Faculty Fellow; Sloan Fellow; Koenderink Prize (2016); EIC IJCV

- **Alex Schwing**
 - Visual learning, segmentation and GAN models

Saurabh Gupta

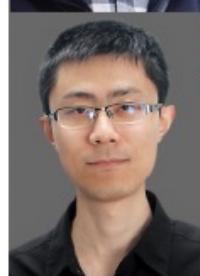
- Linking visual sensing to motion

Liangyan Gui

- Understanding human movement

Shenlong Wang

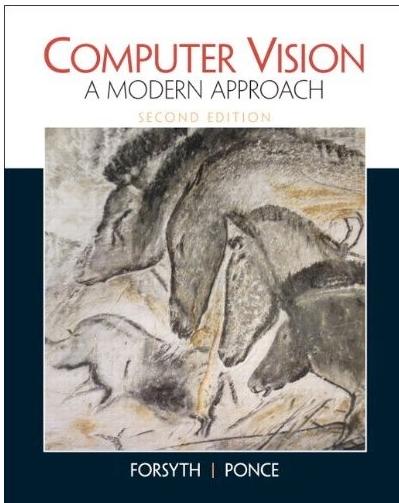
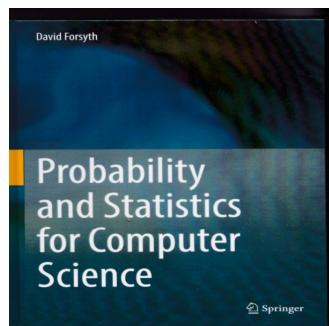
- Simulation and sensing for autonomous vehicles



Yuxiong Wang

- Learning to detect and classify with very little data

Vision group



Well-known ex-students:

Lana Lazebnik (UIUC)

Tamara Berg (UNC)

Pinar Duygulu (Hacettepe U.)

Ian Endres

Ali Farhadi (UW)

Varsha Hedau

Nazli Ikizler (Hacettepe U.)

Brett Jones

Kevin Karsch

Zicheng Liao

Deva Ramanan (CMU)

Raj Sodhi

Gang Wang (now Alibaba)

Amin Sadeghi

Zicheng Liao (Zhejiang U.)

The New Computer Vision

D.A. Forsyth

Likely about 2024 - 2026

Cover design opportunity!

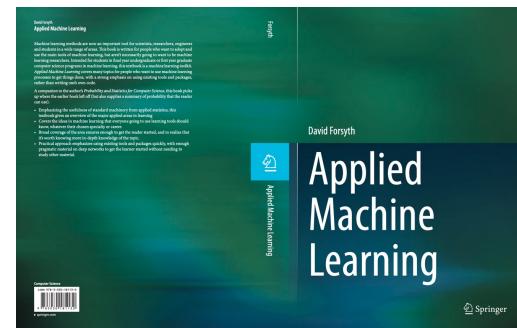
Startups:

Lightform

Revery.ai

Reconstruct

Depix



Top publications

Categories	Publication	English	
		<u>h5-index</u>	<u>h5-median</u>
1.	Nature	<u>488</u>	745
2.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	<u>440</u>	689
3.	The New England Journal of Medicine	<u>434</u>	897
4.	Science	<u>409</u>	633
5.	Nature Communications	<u>375</u>	492
6.	The Lancet	<u>368</u>	678
7.	Neural Information Processing Systems	<u>337</u>	614
8.	Advanced Materials	<u>327</u>	420
9.	Cell	<u>320</u>	482
10.	International Conference on Learning Representations	<u>304</u>	584
11.	JAMA	<u>298</u>	498
12.	Science of The Total Environment	<u>297</u>	436
13.	IEEE/CVF International Conference on Computer Vision	<u>291</u>	484
14.	Angewandte Chemie International Edition	<u>281</u>	361
15.	Nature Medicine	<u>274</u>	474
16.	Journal of Cleaner Production	<u>272</u>	359
17.	International Conference on Machine Learning	<u>268</u>	424
18.	Chemical Reviews	<u>267</u>	461
19.	Proceedings of the National Academy of Sciences	<u>267</u>	405
20.	IEEE Access	<u>266</u>	364

.com

Home / Best Conferences - Computer Science

Best Computer Science Conferences

The ranking of leading conferences for Computer Science was prepared by Research.com, one of the primary websites for Computer Science research offering accurate data on scientific output since 2014.

The spot on the list is based on Impact Score data collected on 21-11-2023. It was based on a careful analysis of as much as 3,040 conference profiles and websites. [Show more](#)

All research All published All countries Paper submission open

Rank	Conference Details	Impact Score
1 Rank	IEEE Computer Vision and Pattern Recognition 18-06-2023 - 22-06-2023 - Vancouver	62.60
2 Rank	International Conference on Computer Vision 11-10-2021 - 11-10-2021 - Montreal	43.80
3 Rank	Neural Information Processing Systems 12-12-2023 - 14-12-2023 - New Orleans	40.60

4 Rank	OpenReview.net 01-05-2023 - 05-05-2023 - Kigali	38.10
5 Rank	AAAI Conference on Artificial Intelligence 07-02-2023 - 14-02-2023 - Washington DC	35.00
6 Rank	International Conference on Machine Learning 17-07-2022 - 23-07-2022 - Baltimore	30.10
7 Rank	European Conference on Computer Vision 29-09-2024 - 04-10-2024 - Milan	29.60
8 Rank	Meeting of the Association for Computational Linguistics 22-05-2022 - 27-05-2022 - Dublin	28.90
9 Rank	Empirical Methods in Natural Language Processing 06-12-2023 - 10-12-2023 - Singapore City	21.90
10 Rank	International Joint Conference on Artificial Intelligence 23-07-2022 - 29-07-2022 - Vienna	21.10

Outline

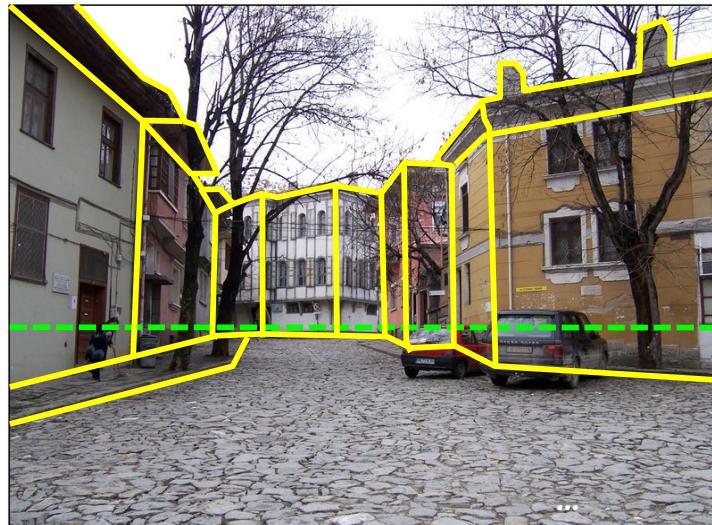
- Key tasks
- Why it is hard
- History of computer vision
- Current state of the art
- Topics covered in class

What does vision do?

- *Classification: What is it?*
- *Localization: Where is it?*
- *Detection: Where and what?*
- *Tracking: Where is it going?*
- *Odometry: How have I moved?*
- *Navigation: Where am I?*
- *Modelling: What is the world like?*
- *Control: What should I do?*
- *Speculation: What will it be like if?*

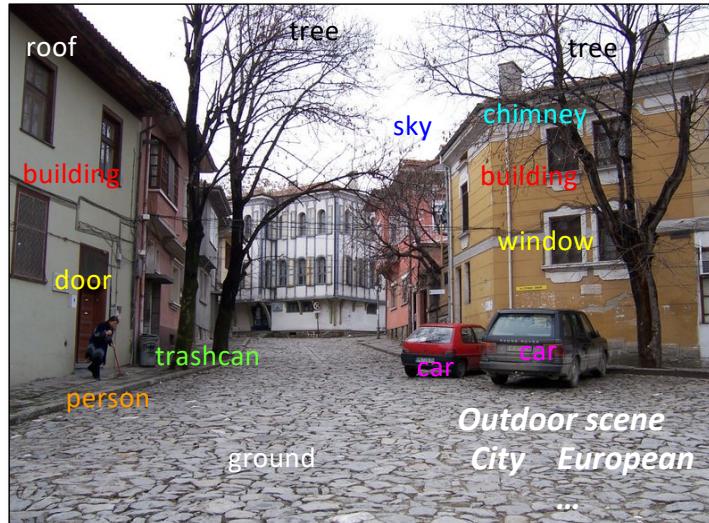
What kind of information can be extracted from an image?

What kind of information can be extracted from an image?



Geometric information

What kind of information can be extracted from an image?



Geometric information
Semantic information

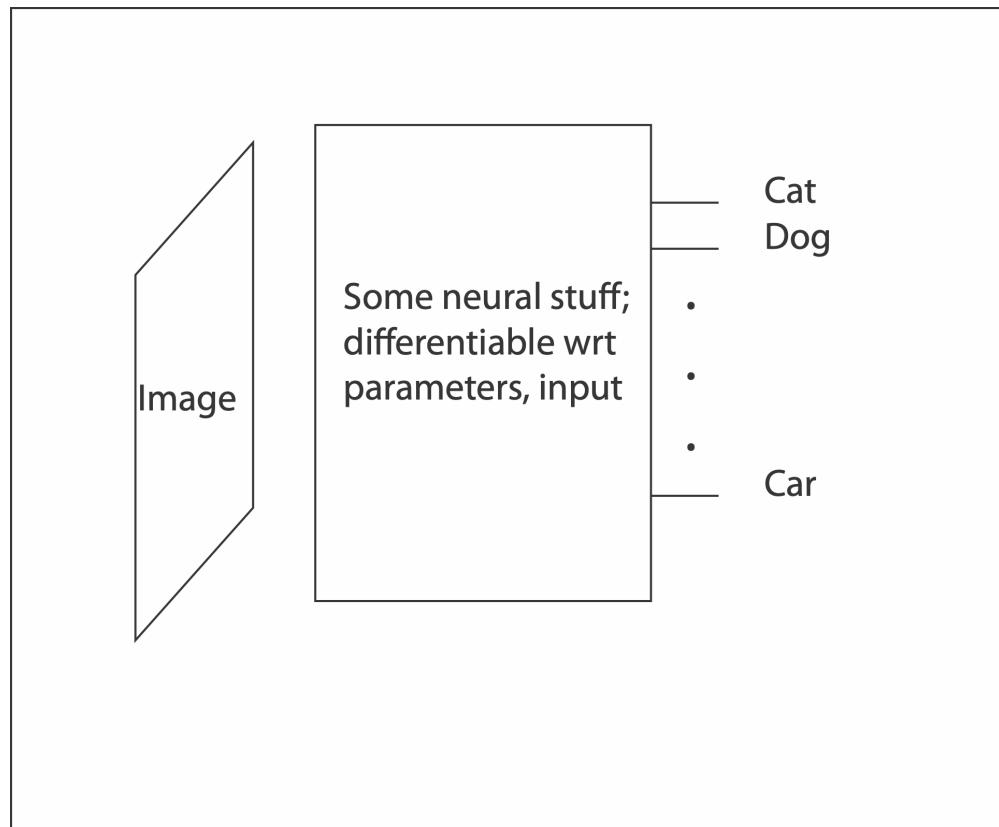
What kind of information can be extracted from an image?

Geometric information
Semantic (?) information – *affordances*

What kind of information can be extracted from an image?

Geometric information
Semantic information
Vision for action

Classification



Detection

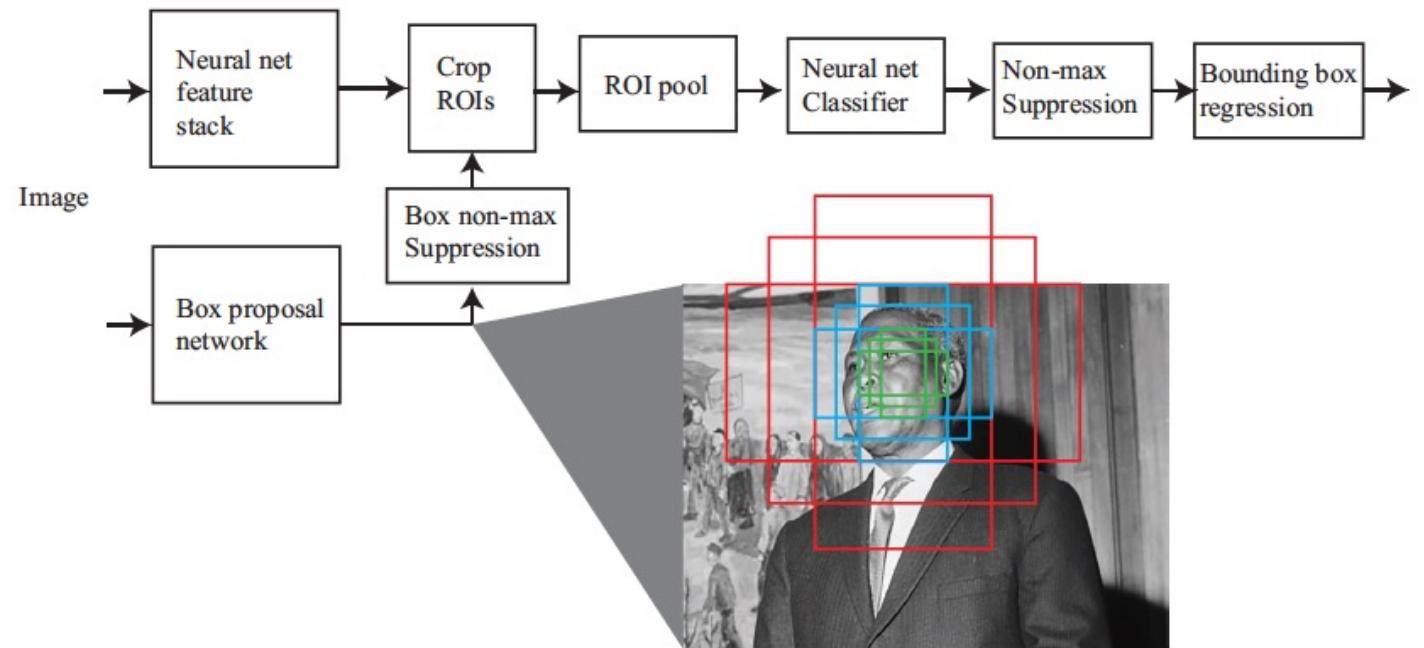
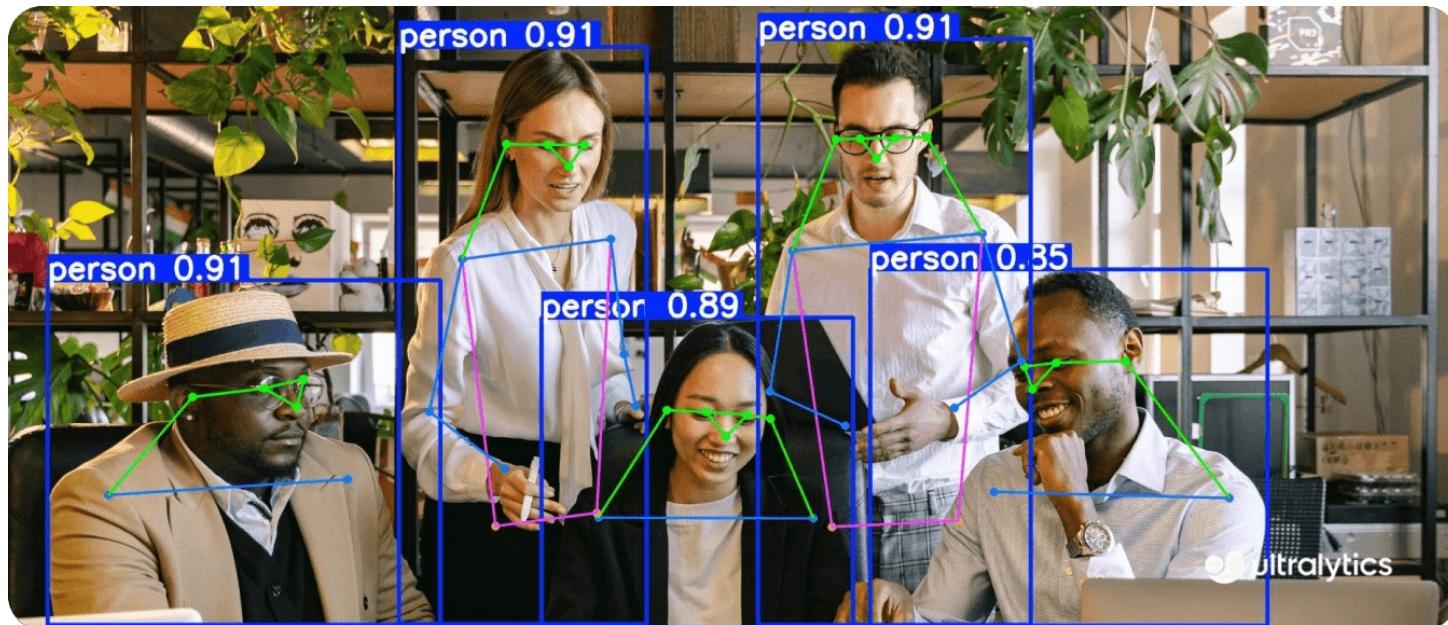
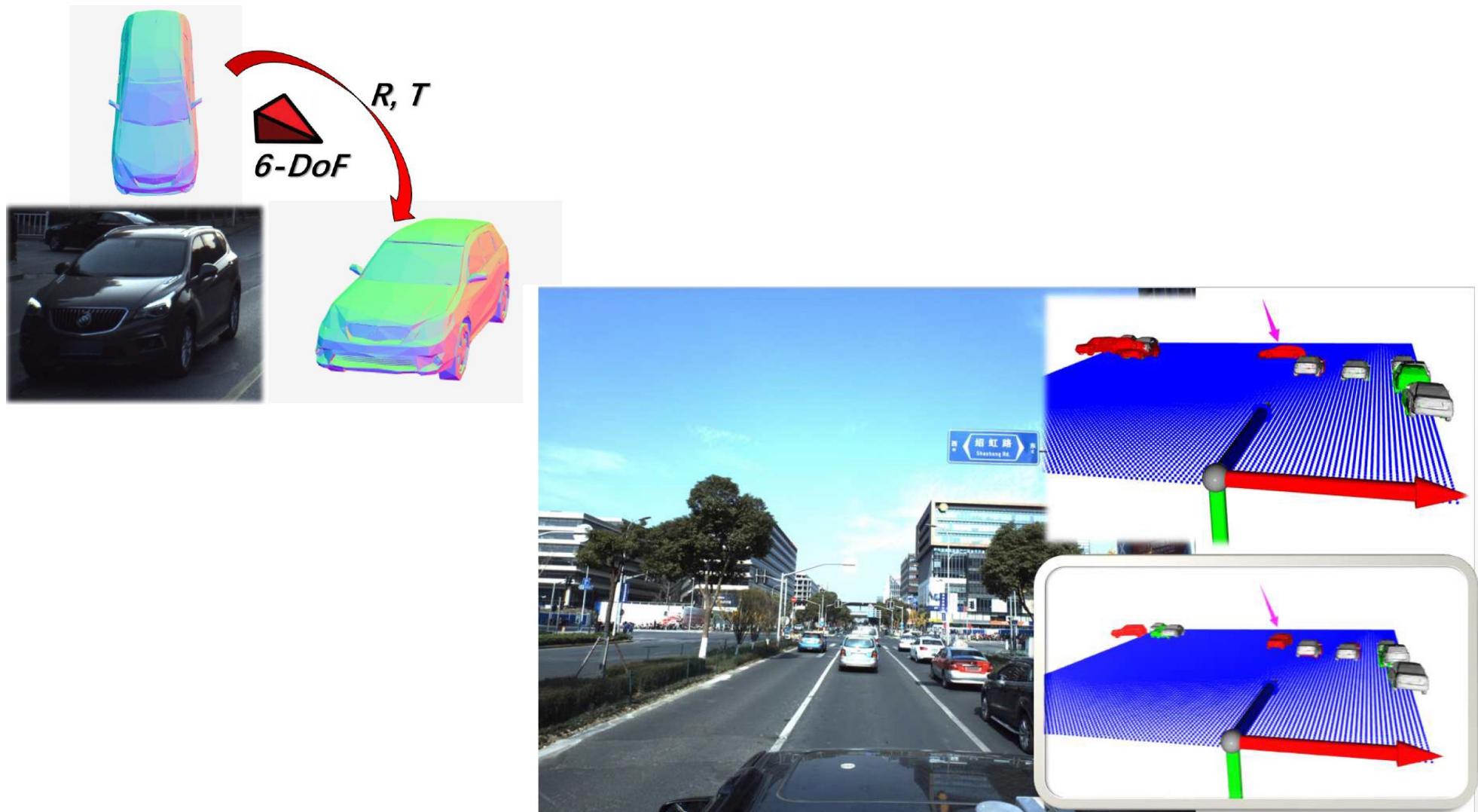


FIGURE 18.8: *Faster R-CNN uses two networks. One uses the image to compute “objectness” scores for a sampling of possible image boxes. The samples (called “anchor boxes”) are each centered at a grid point. At each grid point, there are nine boxes (three scales, three aspect ratios). The second is a feature stack that computes a representation of the image suitable for classification. The boxes with highest objectness score are then cut from the feature map, standardized with ROI pooling, then passed to a classifier. Bounding box regression means that the relatively coarse sampling of locations, scales and aspect ratios does not weaken accuracy.*

Detection and localization in 2D

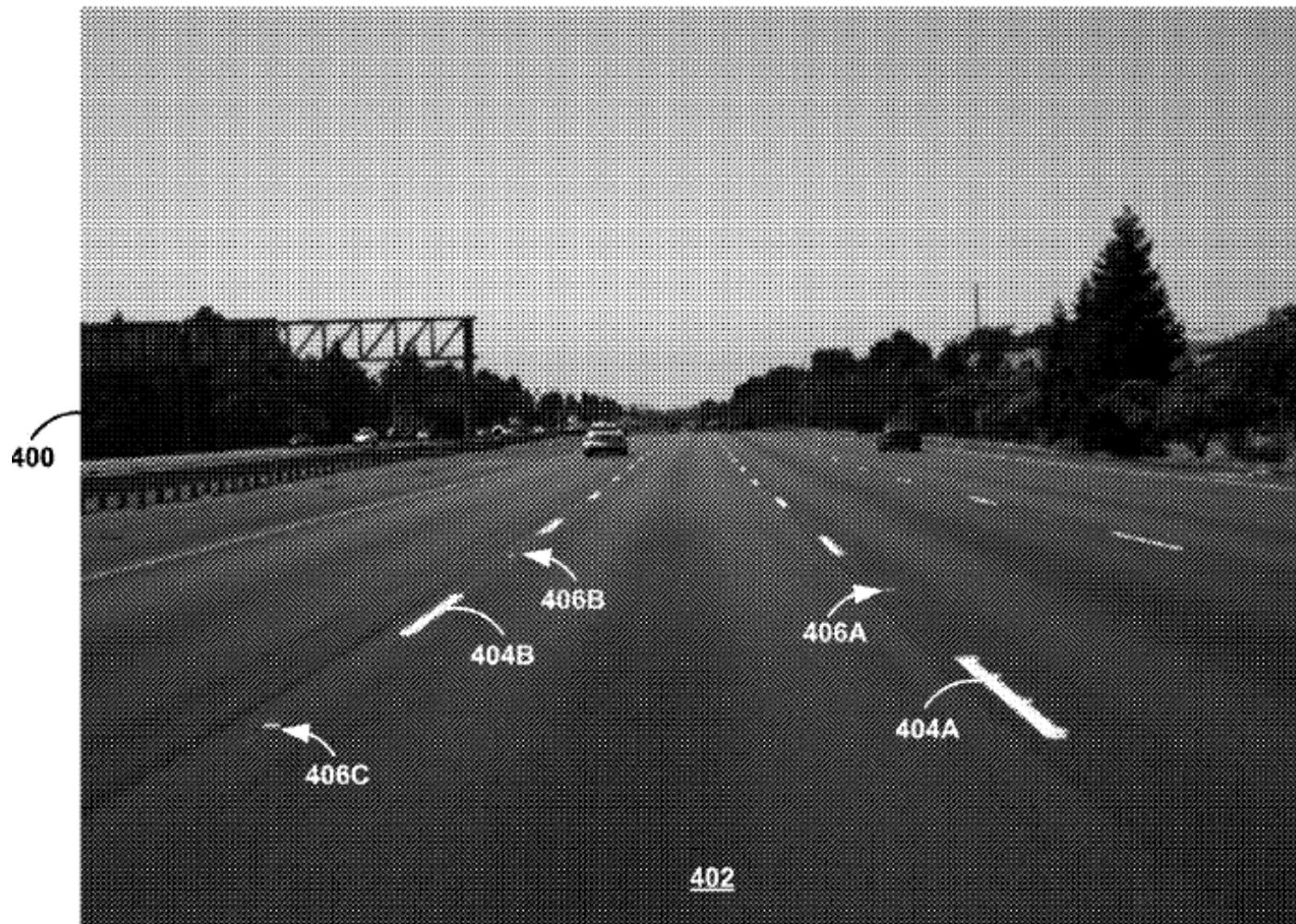


Localization in 3D from detection



Wu et al, 6D-VNet: End-to-end 6DoF Vehicle Pose Estimation from Monocular RGB Images

Lane detection

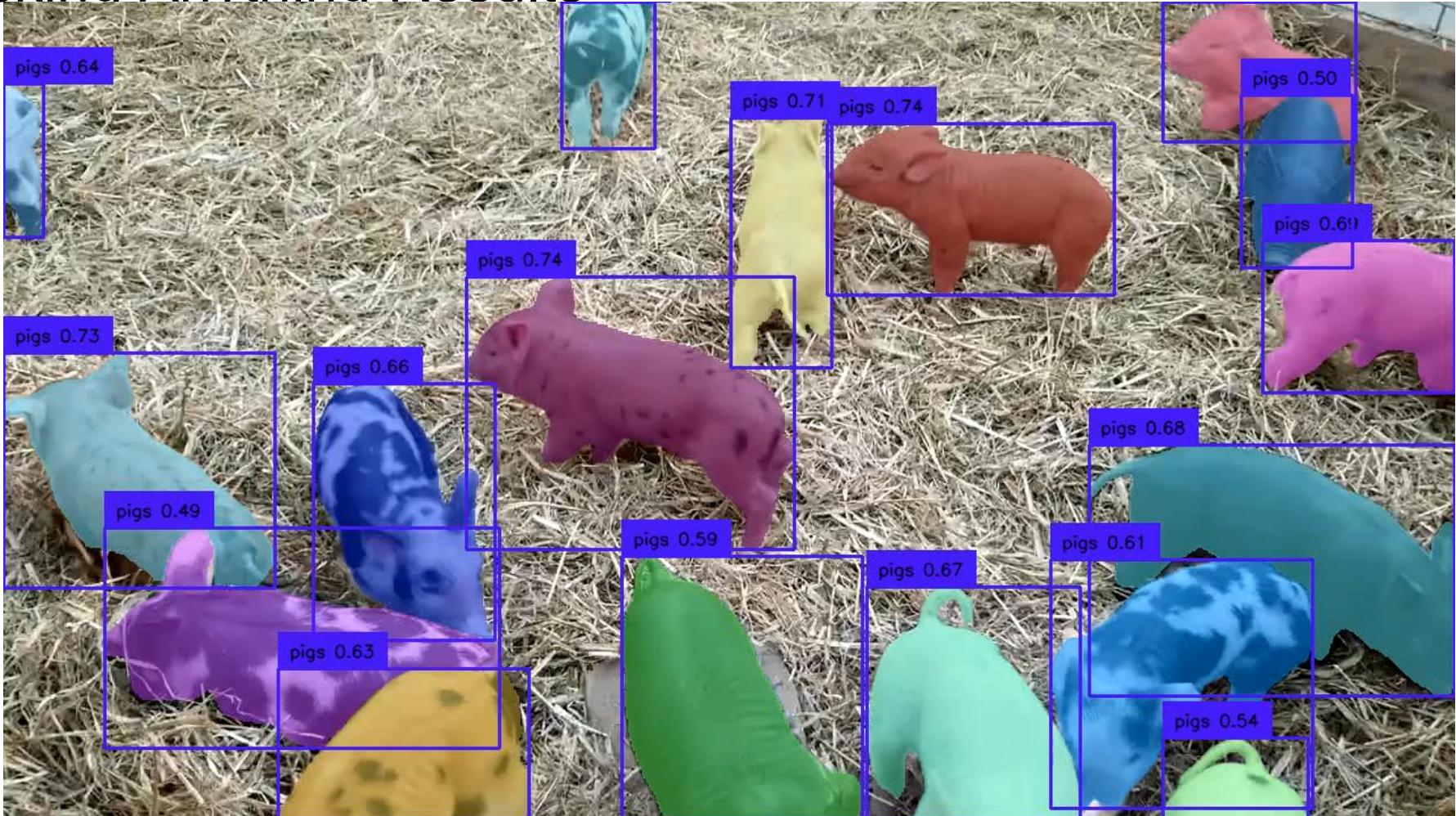


Strategy: detect markers (reflective paint), join up

exercise in robust fitting of curves

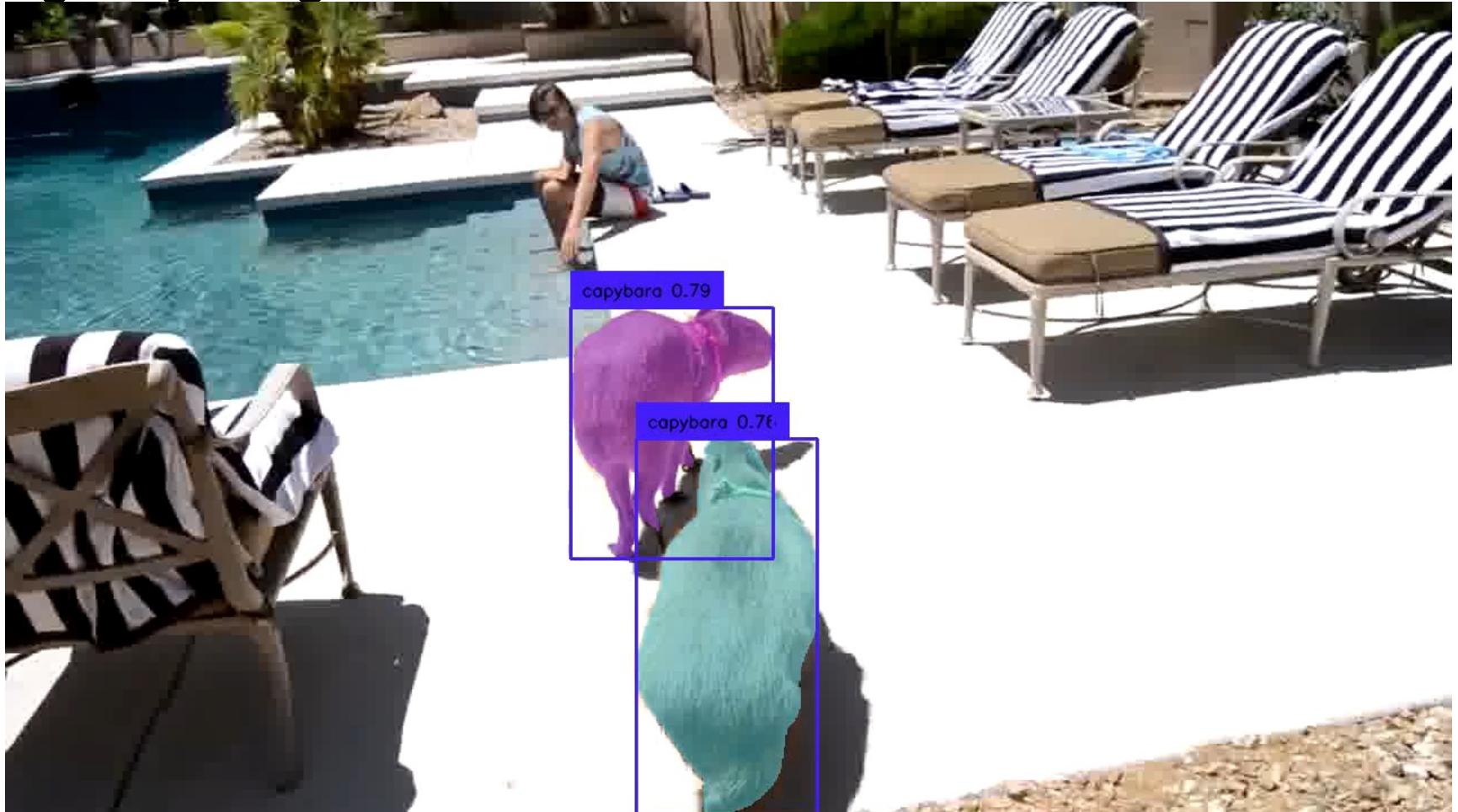
FIGURE 4A

Tracking Anything Results



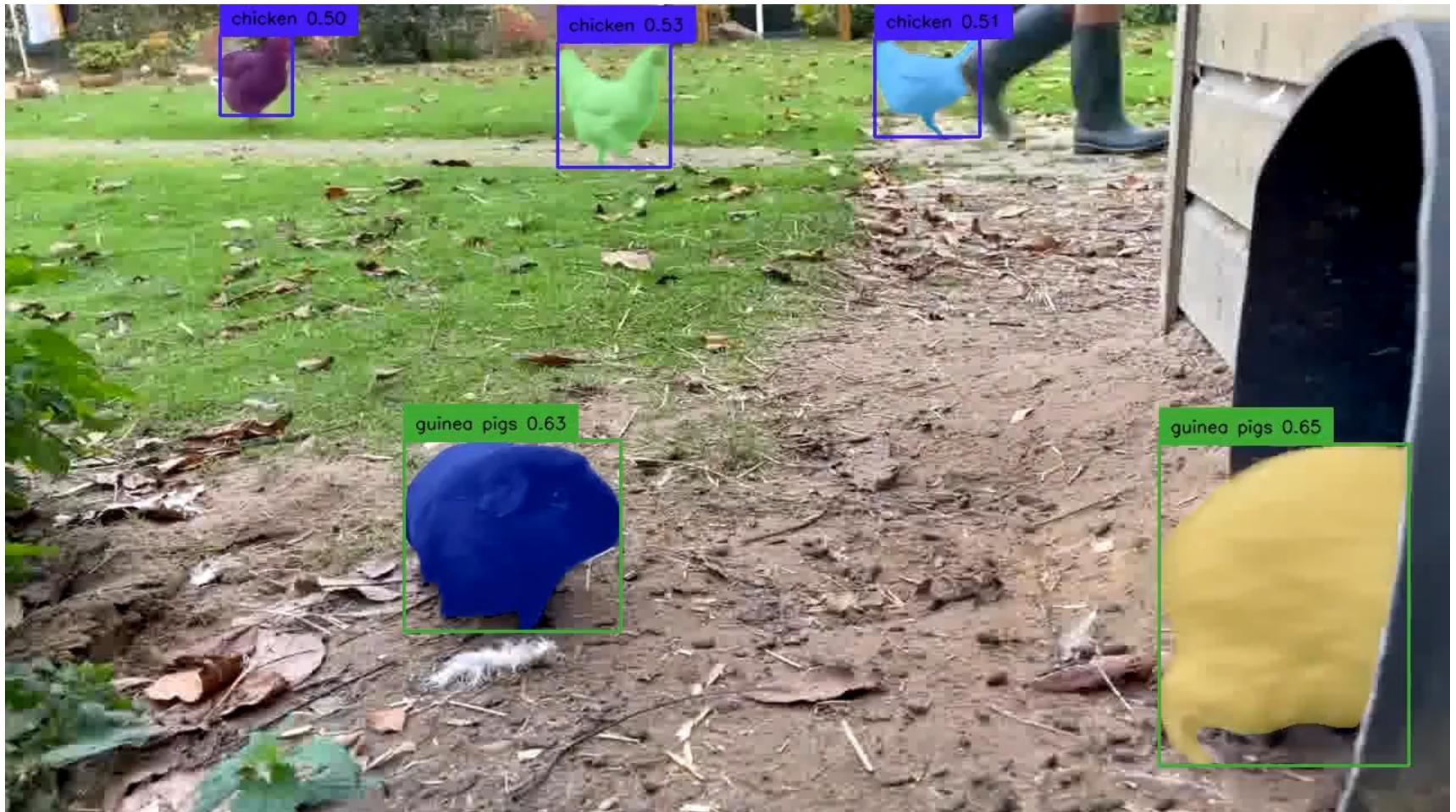
Cheng et al.; DEVA: Tracking anything with decoupled video segmentation; 2023

Tracking Anything Results



Cheng et al.; DEVA: Tracking anything with decoupled video segmentation; 2023

Tracking Anything Results



Cheng et al.; DEVA: Tracking anything with decoupled video segmentation; 2023

Visual odometry

<https://github.com/MAC-VO/MAC-VO/blob/main/asset/ICRAvideo.gif>

Extreme odometry

<https://www.youtube.com/watch?v=fBiataDpGlo>

Goal: To extract useful information from pixels

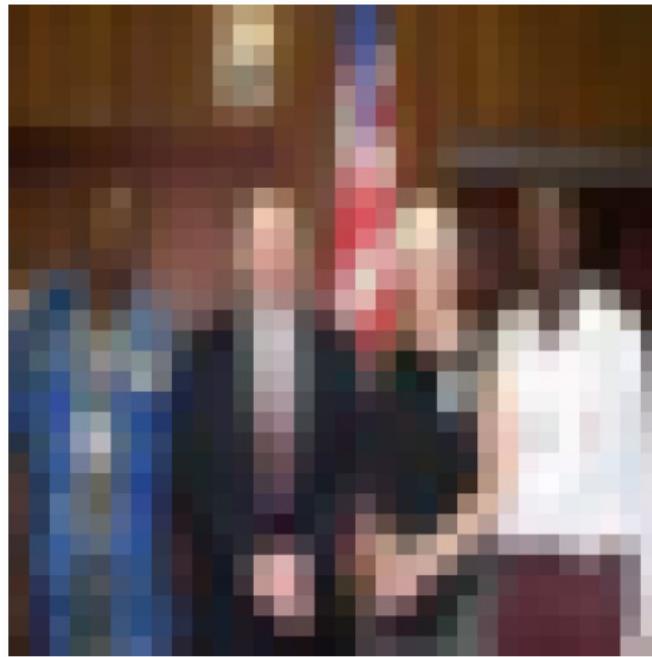
What we see

0	3	2	5	4	7	6	9	8
3	0	1	2	3	4	5	6	7
2	1	0	3	2	5	4	7	6
5	2	3	0	1	2	3	4	5
4	3	2	1	0	3	2	5	4
7	4	5	2	3	0	1	2	3
6	5	4	3	2	1	0	3	2
9	6	7	4	5	2	3	0	1
8	7	6	5	4	3	2	1	0

What a computer sees

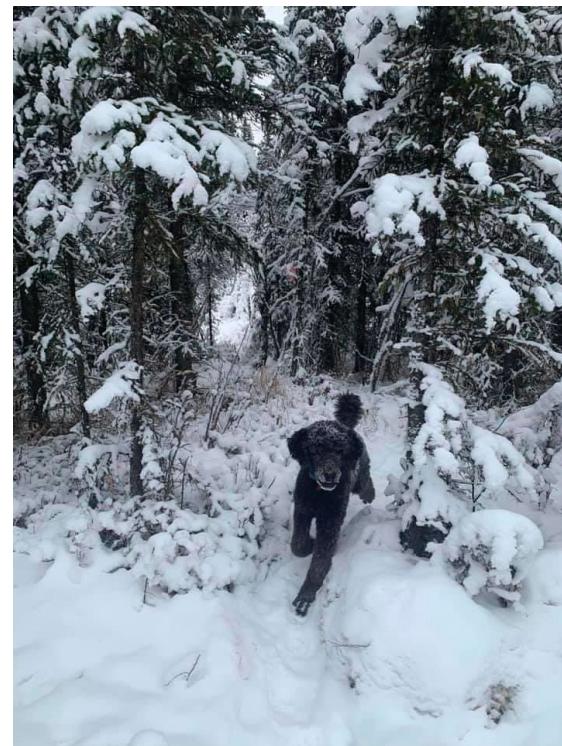
Trad. View: Images are fundamentally ambiguous!

Humans are remarkably good at vision...



Source: "80 million tiny images" by Torralba et al.

...still, vision is hard even for humans



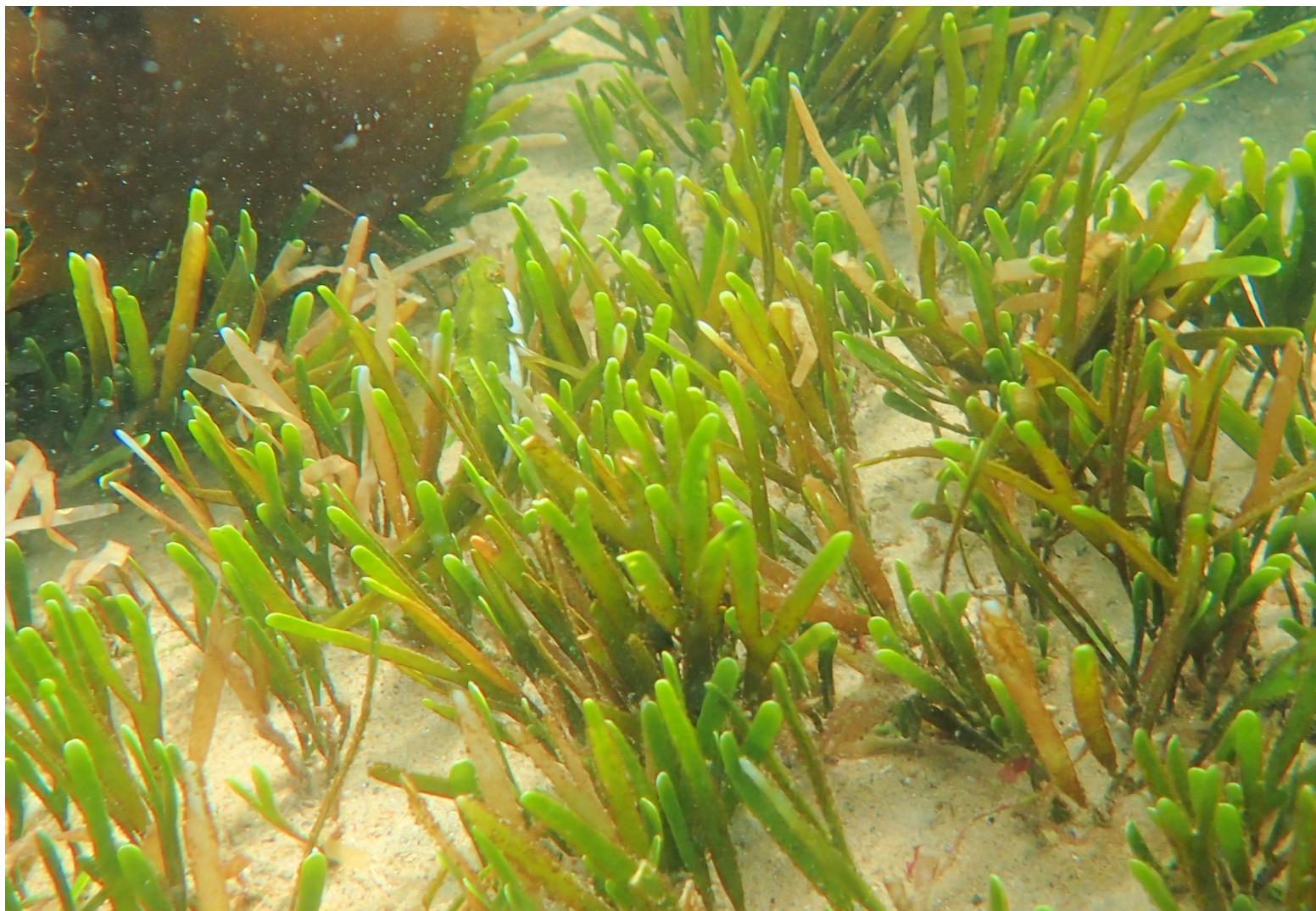
[Image source](#)

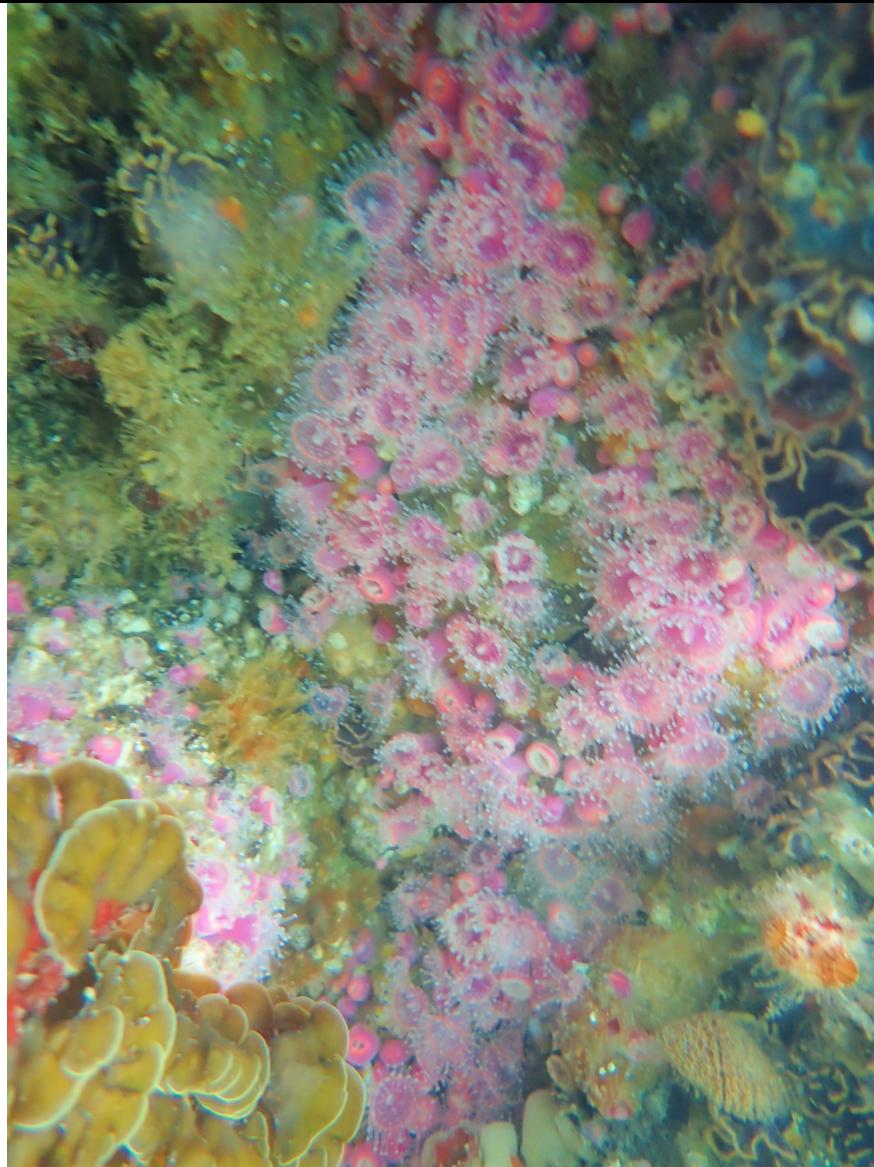
[Image source](#)

...still, vision is hard even for humans

Figure from Marr (1982), attributed to R. C. James

Is there a fi

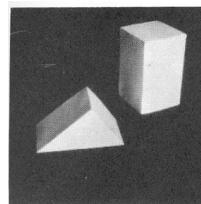




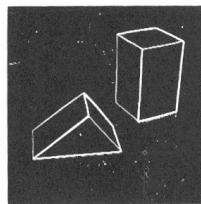
Outline

- Logistics, requirements
- Goal of computer vision and why it is hard
- History of computer vision

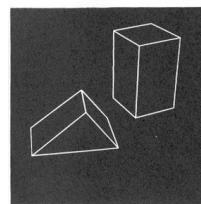
How it started



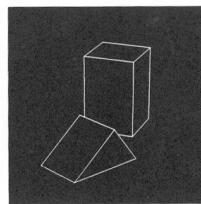
(a) Original picture.



(b) Differentiated picture.



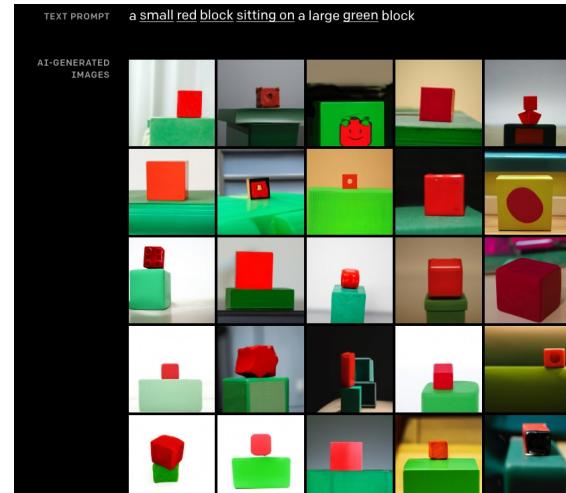
(c) Line drawing.



(d) Rotated view.

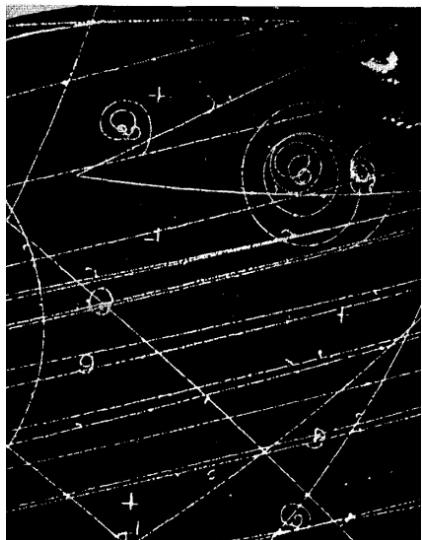
[L. G. Roberts, 1963](#)

How it's going

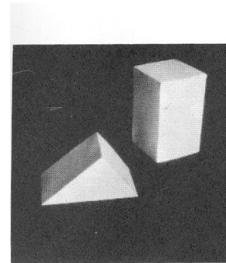


[OpenAI DALL-E, 2020](#)

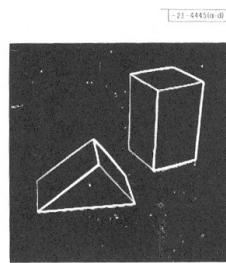
Origins



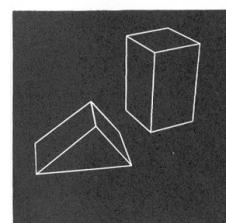
[Hough, 1959](#)



(a) Original picture.

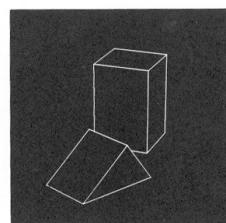


(b) Differentiated picture.

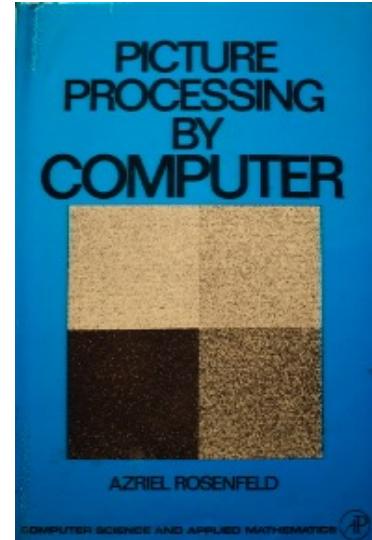


(c) Line drawing.

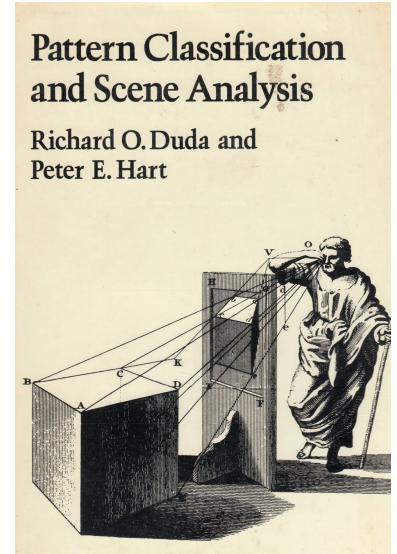
[Roberts, 1963](#)



(d) Rotated view.



Rosenfeld, 1969



Duda & Hart, 1972

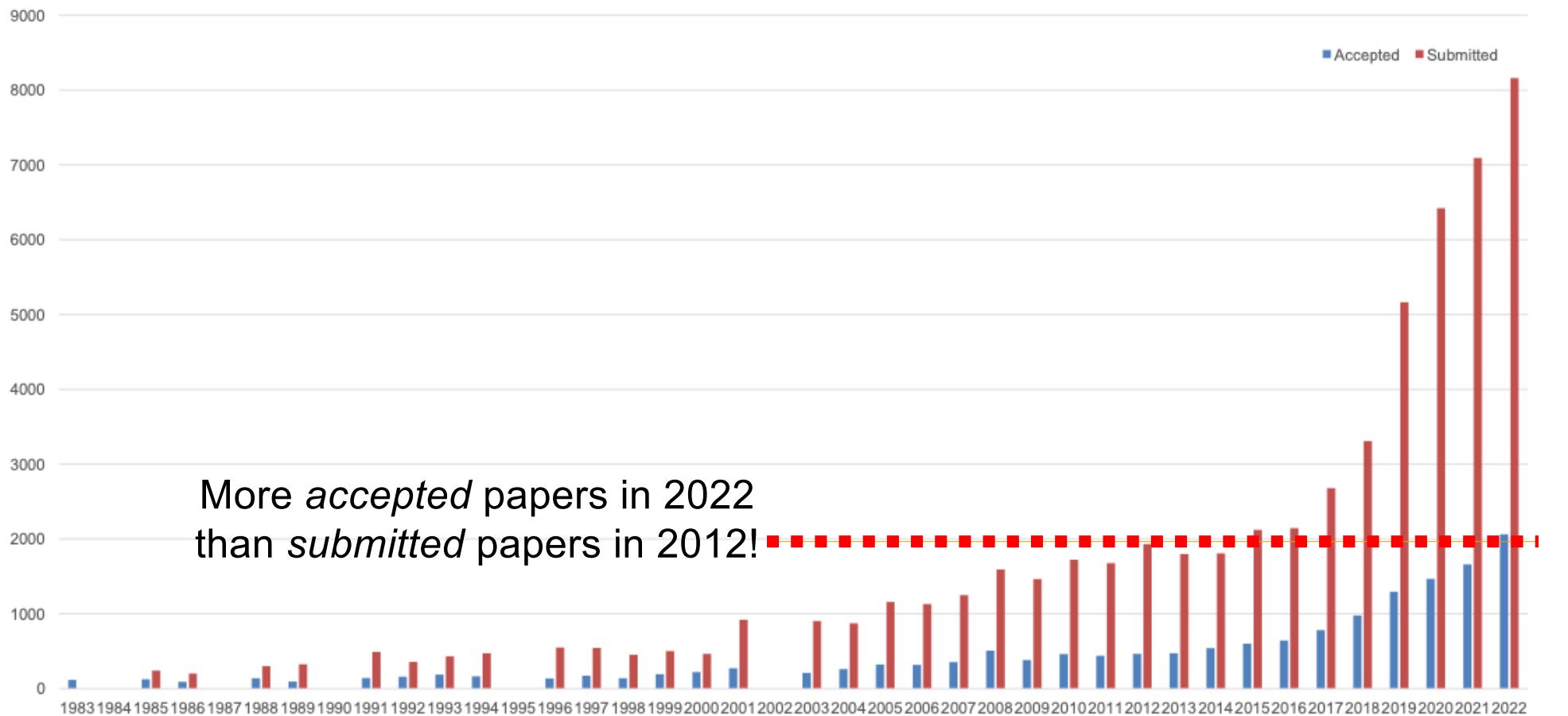
Decade by decade

- **1960s:** Blocks world, image processing and pattern recognition
- **1970s:** Key recovery problems defined: structure from motion, stereo, shape from shading, color constancy. Attempts at knowledge-based recognition
- **1980s:** Fundamental and essential matrix, multi-scale analysis, corner and edge detection, optical flow, geometric recognition as alignment
- **1990s:** Multi-view geometry, statistical and appearance-based models for recognition, first approaches for (class-specific) object detection
- **2000s:** Local features, generic object recognition and detection
- **2010s:** Deep learning, big data

- For much more detail: see Prof Lazebnik's [historical overview](#)

Adapted from J. Malik

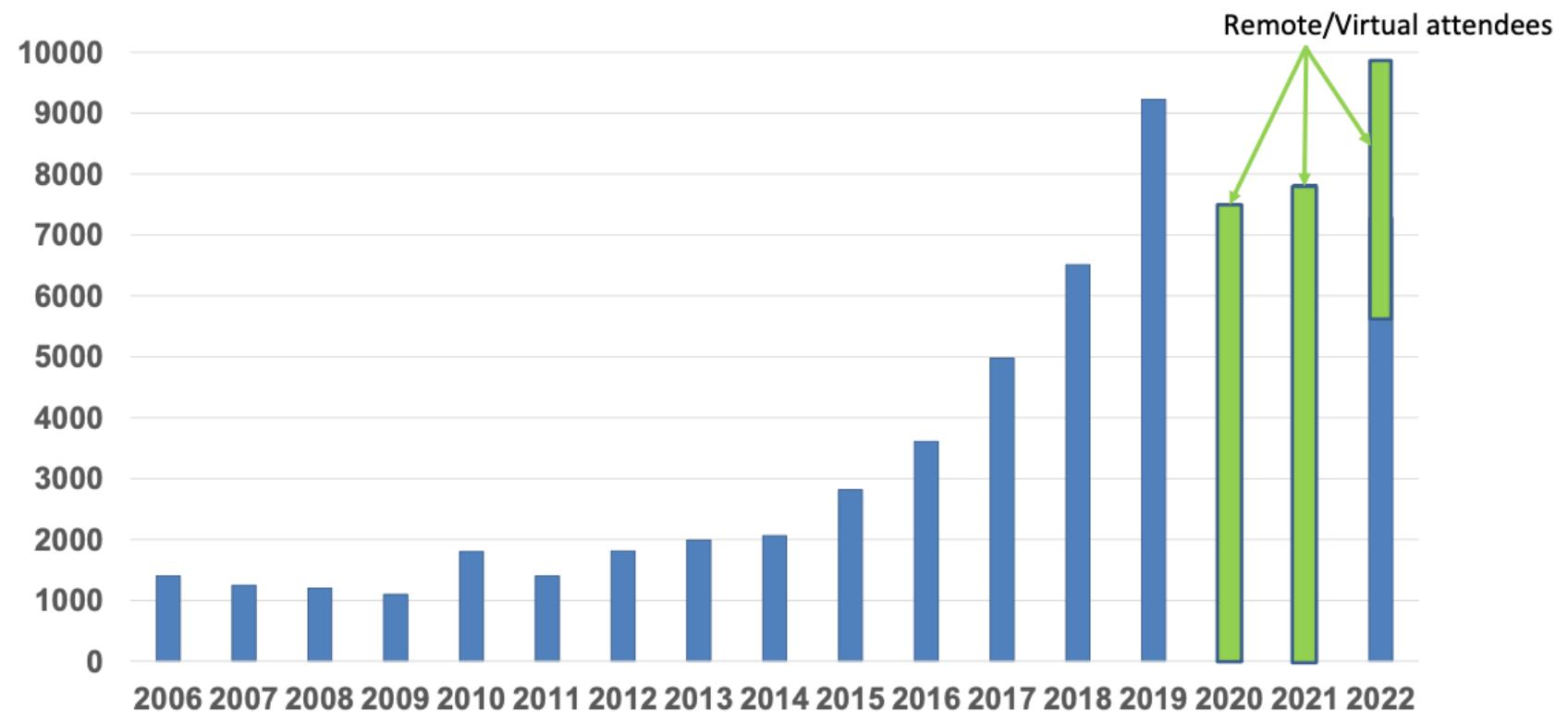
Growth of the field: CVPR papers



*More accepted papers in 2022
than submitted papers in 2012!*

Source: [CVPR 2022 opening slides](#)

Growth of the field: CVPR attendance

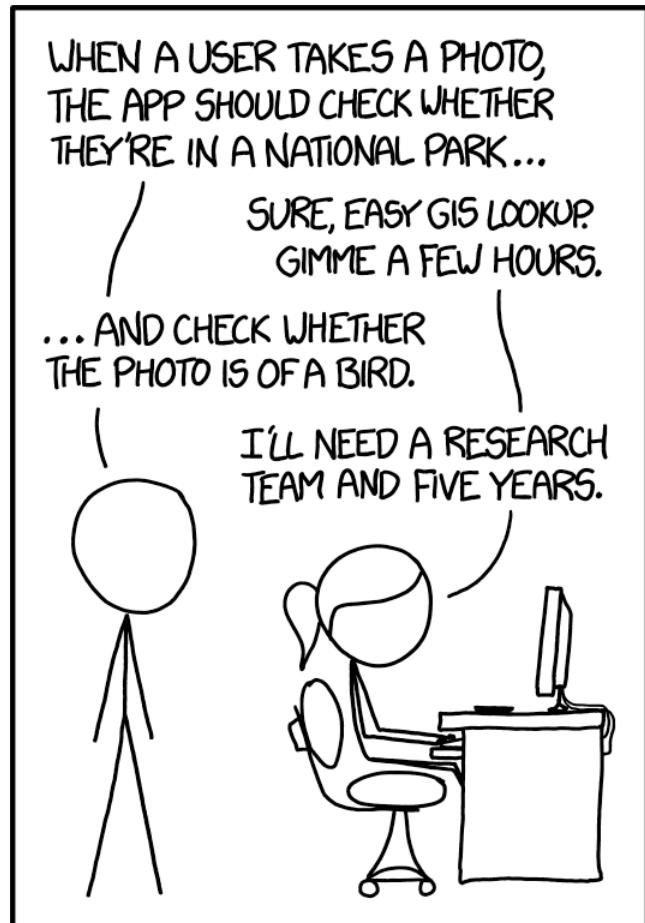


Source: [CVPR 2022 opening slides](#)

Introduction: Outline

- Logistics, requirements
- Goal of computer vision and why it is hard
- History of computer vision
- Current(ish) state of the art

What can computer vision do today?

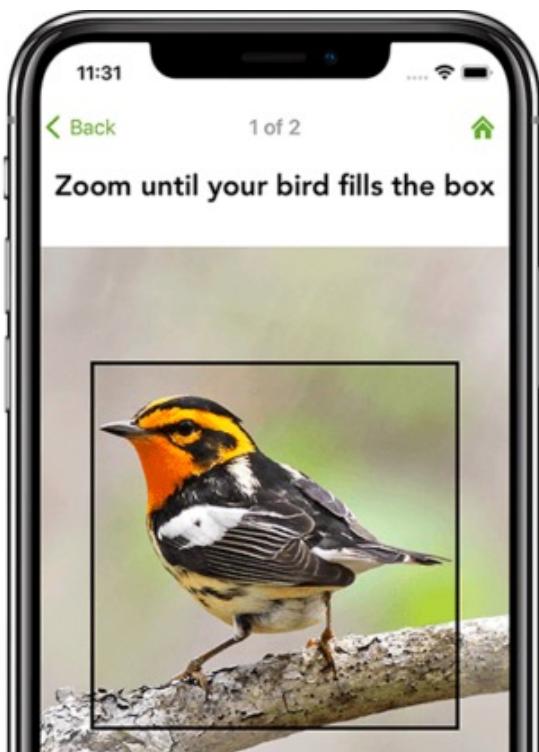
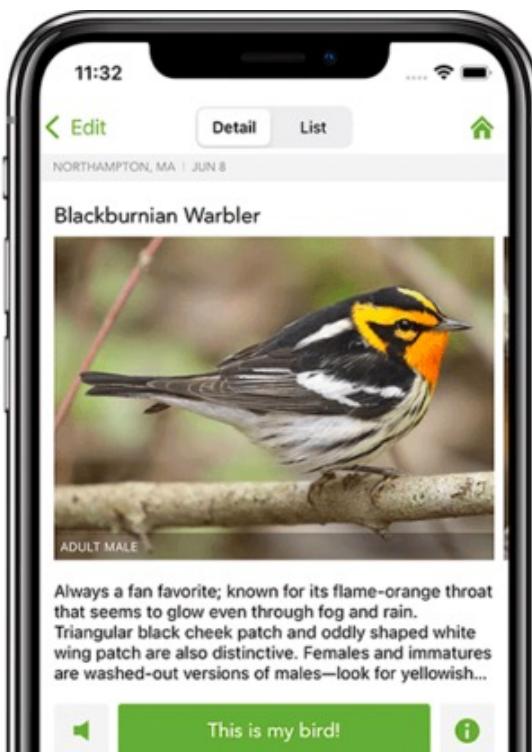


In the 60s, Marvin Minsky assigned a couple of undergrads to spend the summer programming a computer to use a camera to identify objects in a scene. He figured they'd have the problem solved by the end of the summer. Half a century later, we're still working on it.

<https://xkcd.com/1425/>
(September 24, 2014)

What can computer vision do today?

- It's 2025 now...

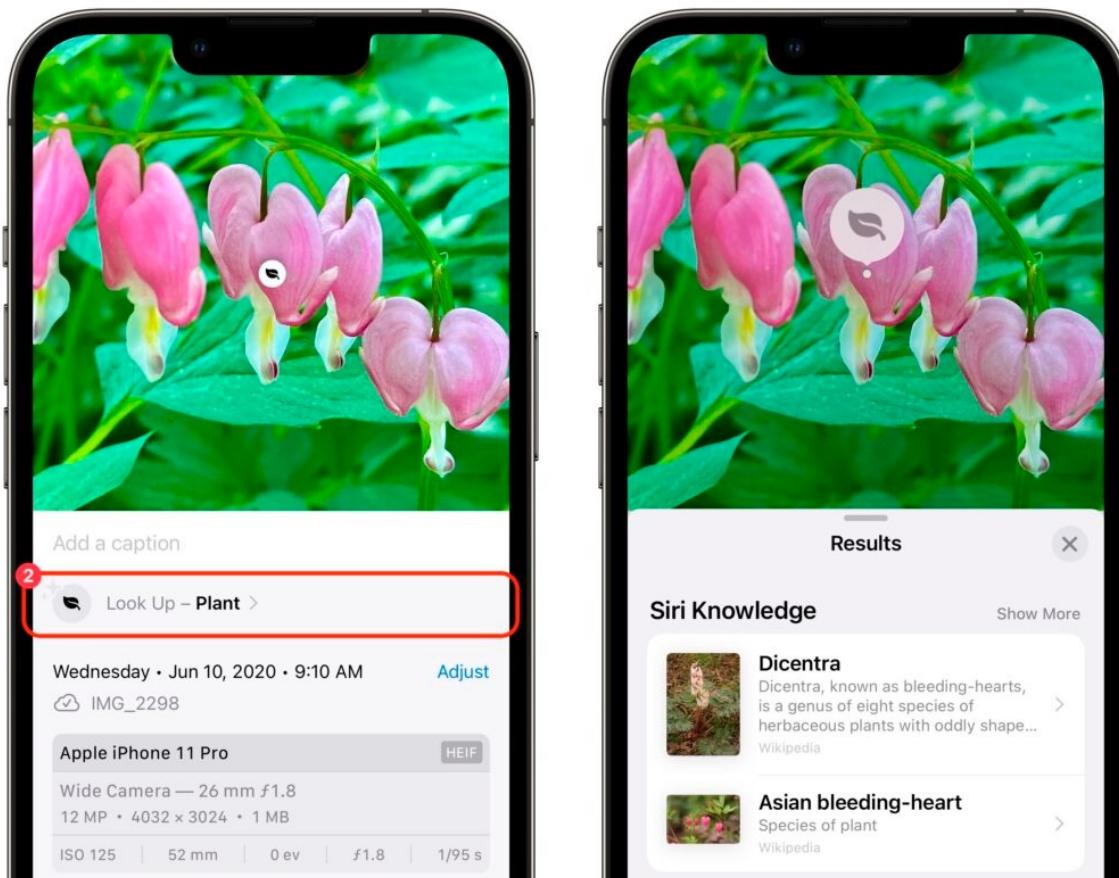


Merlin®

<https://merlin.allaboutbirds.org/>

What can computer vision do today?

- It's 2025 now...



[Image source](#)

What can computer vision do today?

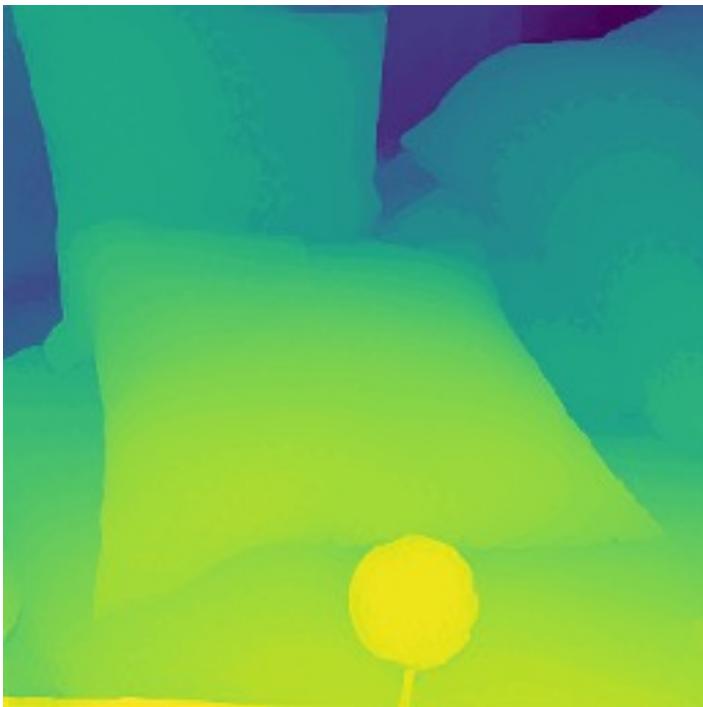
- Reconstruction
- Recognition
- *Reconstruction meets recognition, or 3D scene understanding*
- *Image generation*
- *Vision for action*

Regression

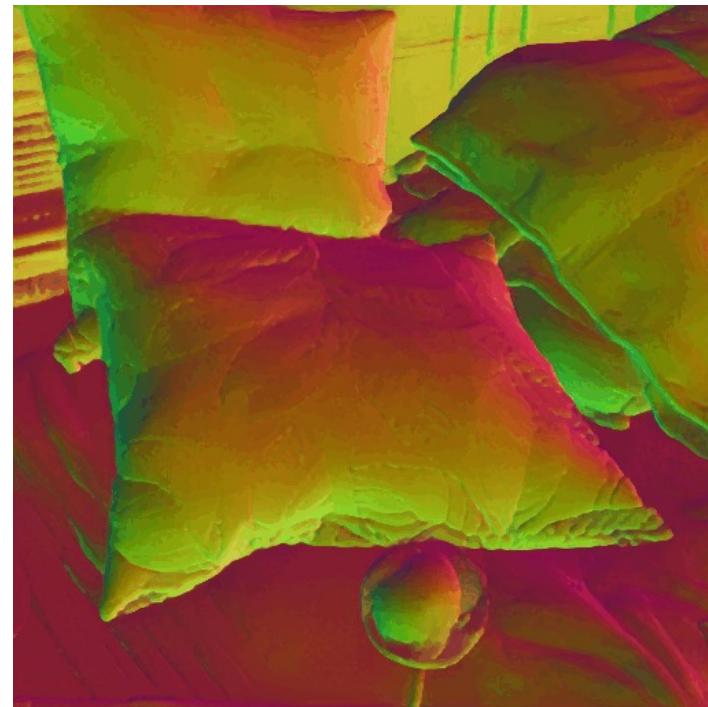
- We must make image-like things from images
- Examples:
 - depth map from image
 - normal map from image
 - derained image from rainy image
 - defogged image from foggy image
- Train with pairs (image, depth)
 - or (image, normal), etc
 - Loss
 - Squared error +abs value of error+other terms as required

E

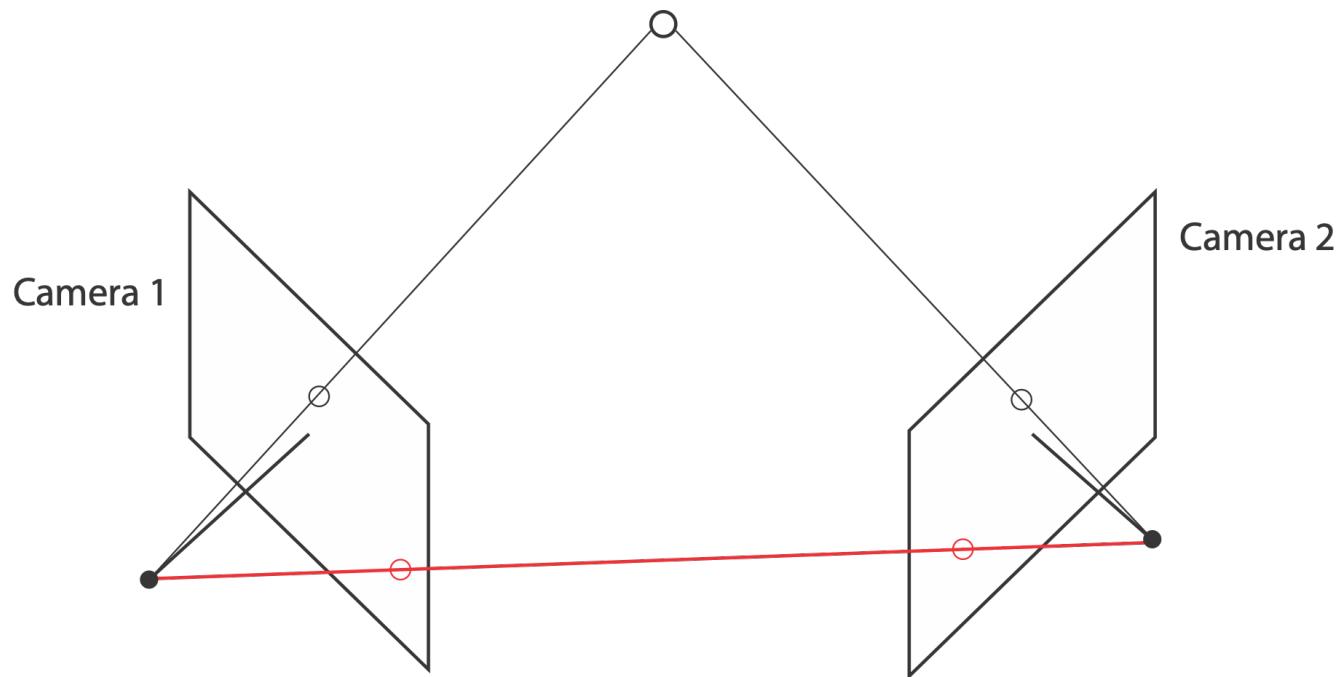
Depth (omnimap, current best depth est)



Normal (omnimap, current best normal est)



Correspondence yields 3D configuration



Reconstruction: 3D from photo collections

Colosseum, Rome, Italy

San Marco Square, Venice, Italy

Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz, [The Visual Turing Test for Scene Reconstruction](#), 3DV 2013

[YouTube Video](#)

Reconstruction: 4D from photo collections

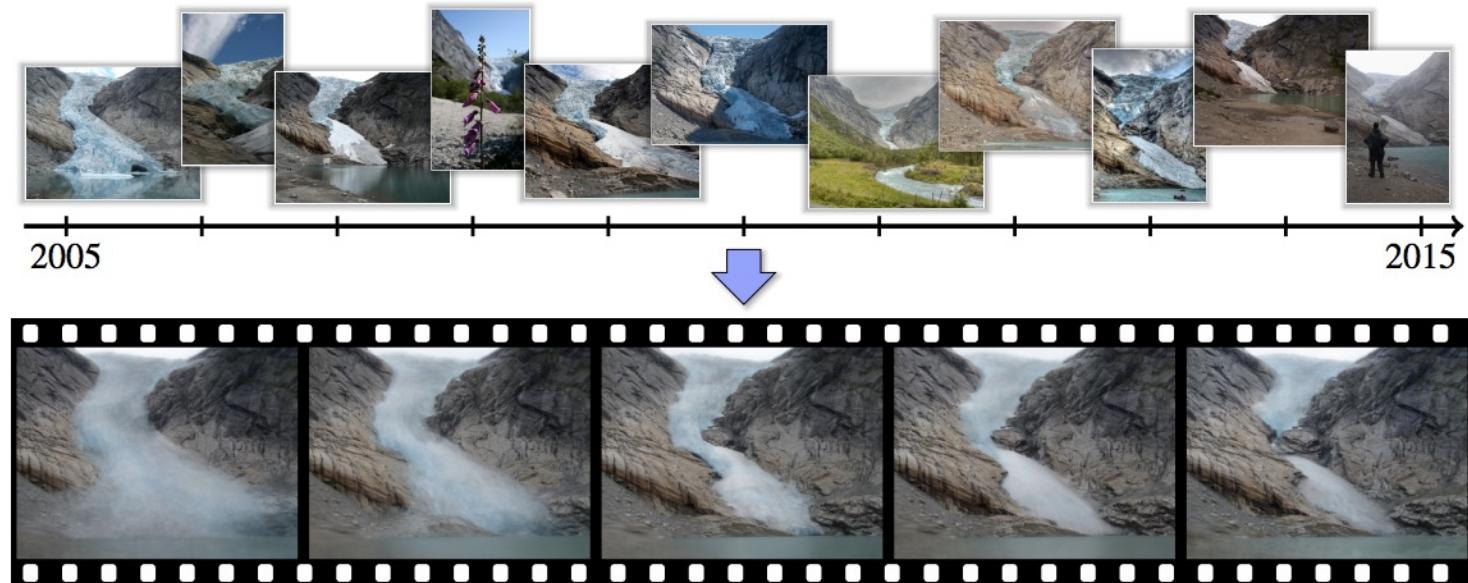


Figure 1: We mine Internet photo collections to generate time-lapse videos of locations all over the world. Our time-lapses visualize a multitude of changes, like the retreat of the Briksdalsbreen Glacier in Norway shown above. The continuous time-lapse (bottom) is computed from hundreds of Internet photos (samples on top). Photo credits: Aliento Más Allá, jirihnidek, mcxurxo, elka-cz, Juan Jesús Orío, Klaus Wijkirchen, Daikrieg, Free the image, dration and Nadav Tobias.

R. Martin-Brualla, D. Gallup, and S. Seitz, [Time-Lapse Mining from Internet Photos](#), SIGGRAPH 2015

[YouTube Video](#)

Reconstruction: 4D from depth cameras

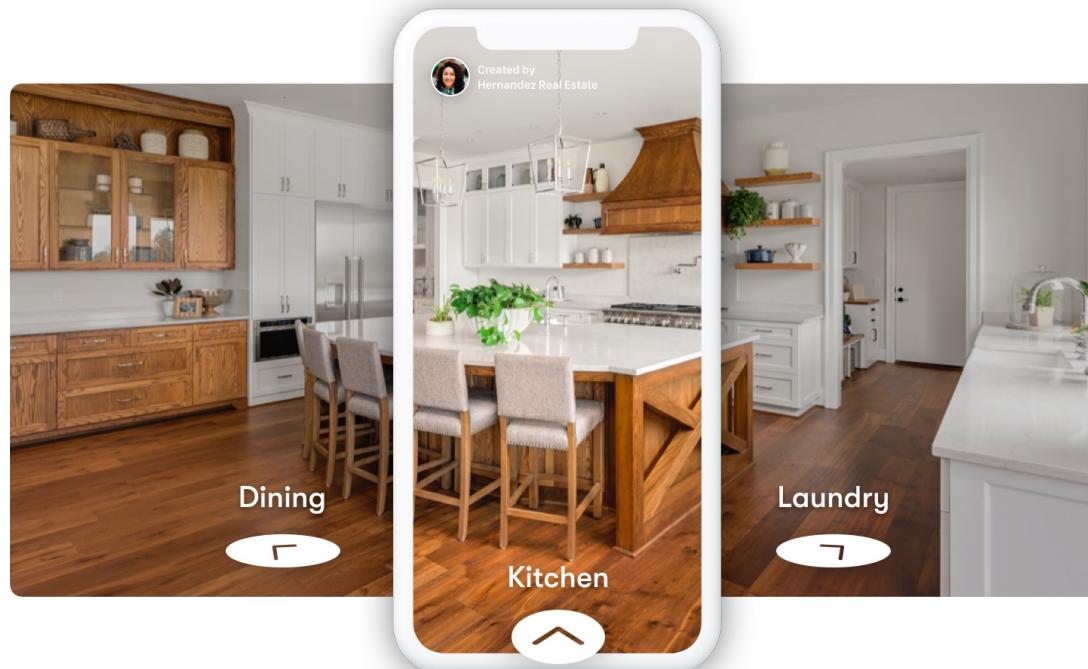
Figure 1: Real-time reconstructions of a moving scene with DynamicFusion; both the person and the camera are moving. The initially noisy and incomplete model is progressively denoised and completed over time (left to right).

R. Newcombe, D. Fox, and S. Seitz, [DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-Time](#), CVPR 2015

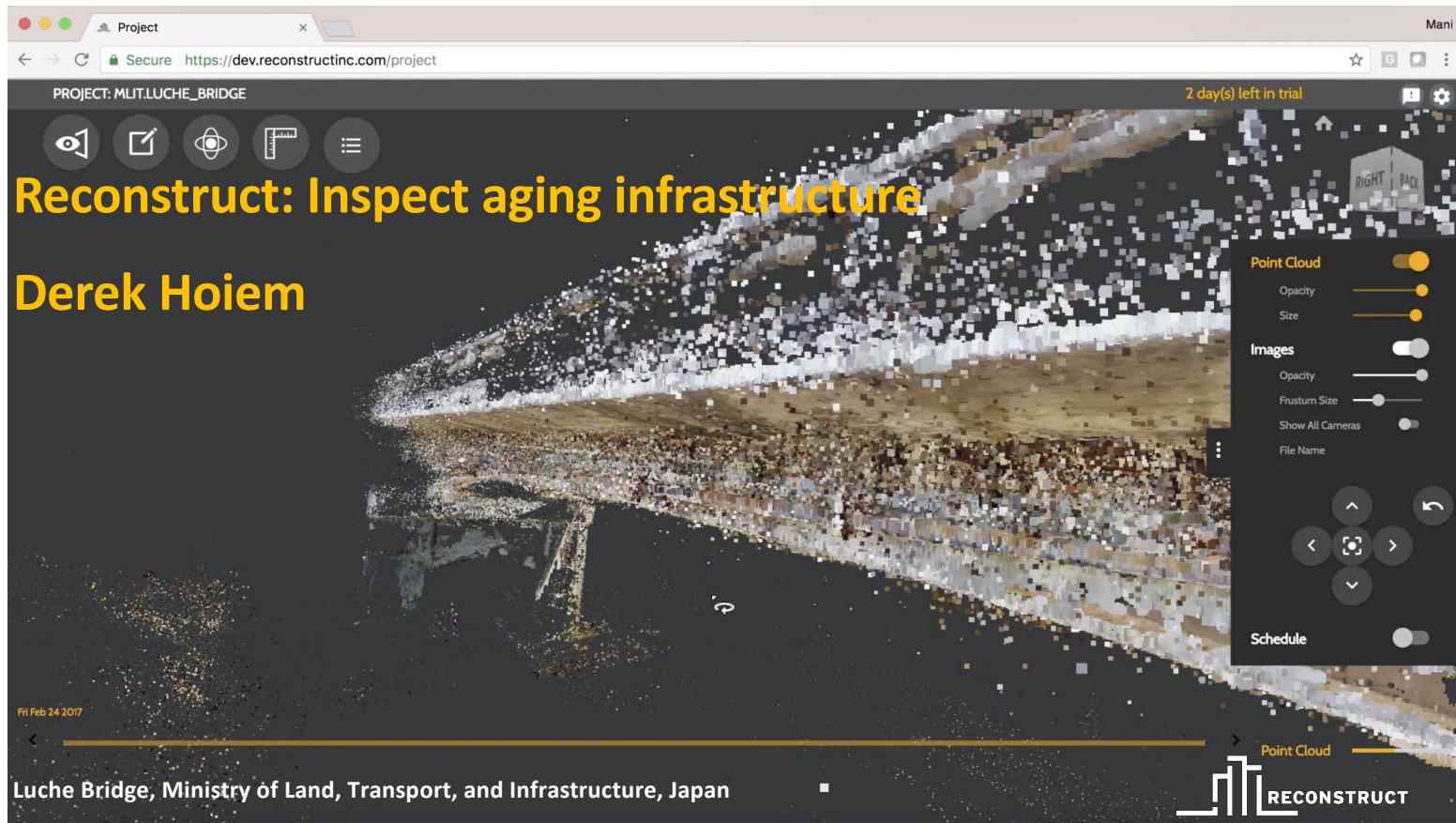
[YouTube Video](#)

Reconstruction: Commercial applications

**Make your listing pop with Zillow
3D Home® tours**



<https://www.zillow.com/z/3d-home/>

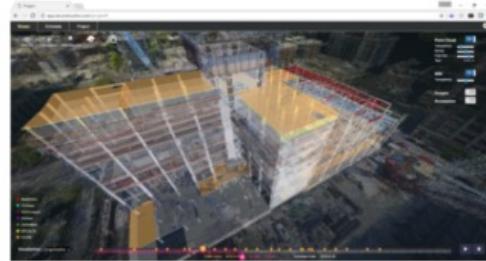


Reconstruction: Commercial applications

RECONSTRUCT INTEGRATES REALITY AND PLAN

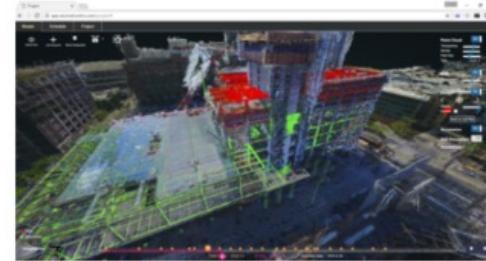
Visual Asset Management

Reconstruct 4D point clouds and organize images and videos from smartphones, time-lapse cameras, and drones around the project schedule. View, annotate, and share anywhere with a web interface.



4D Visual Production Models

Integrate 4D point clouds with 4D BIM, review "who does what work at what location" on a daily basis and improve coordination and communication among project teams.



Predictive Visual Data Analytics

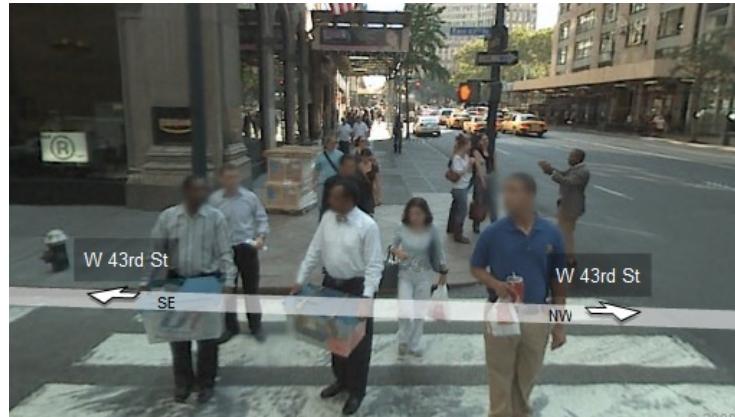
Analyze actual progress deviations by comparing Reality and Plan and predict risk with respect to the execution of the look-ahead schedule for each project location, to offer your project team with an opportunity to tap off potential delays before they surface on your jobsite.

reconstructinc.com

Source: D. Hoiem

Recognition: “Simple” patterns

Recognition: Faces



Recognition: Faces

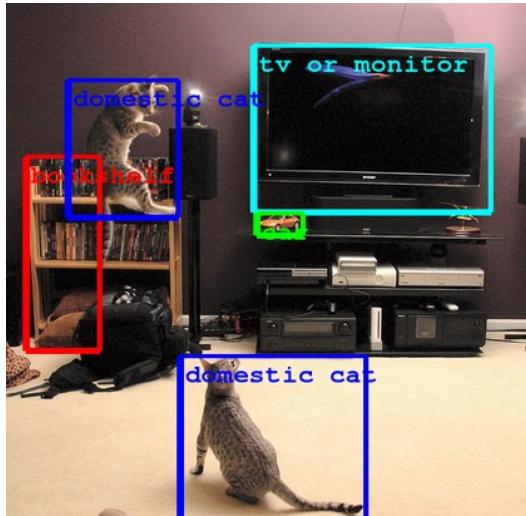
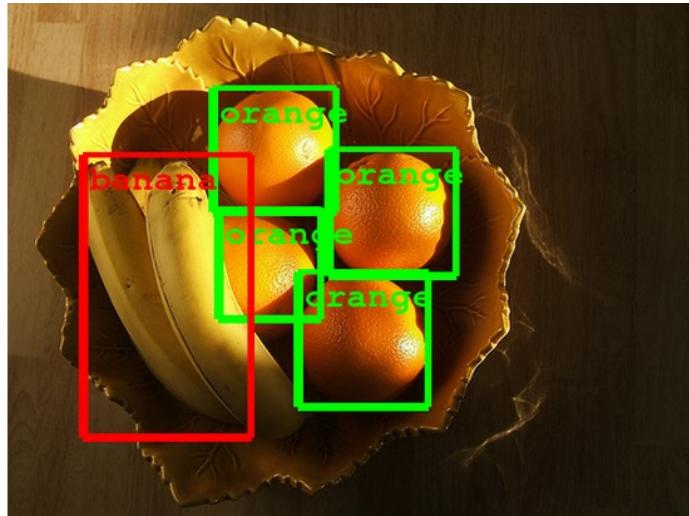
[How China Uses High-Tech Surveillance to Subdue Minorities](#) – New York Times, 5/22/2019

[The Secretive Company That Might End Privacy As We Know It](#) – New York Times, 1/18/2020

[Wrongfully Accused by an Algorithm](#) – New York Times, 6/24/2020

[Facial Recognition Goes to War](#) – New York Times, 4/7/2022

Recognition: General categories

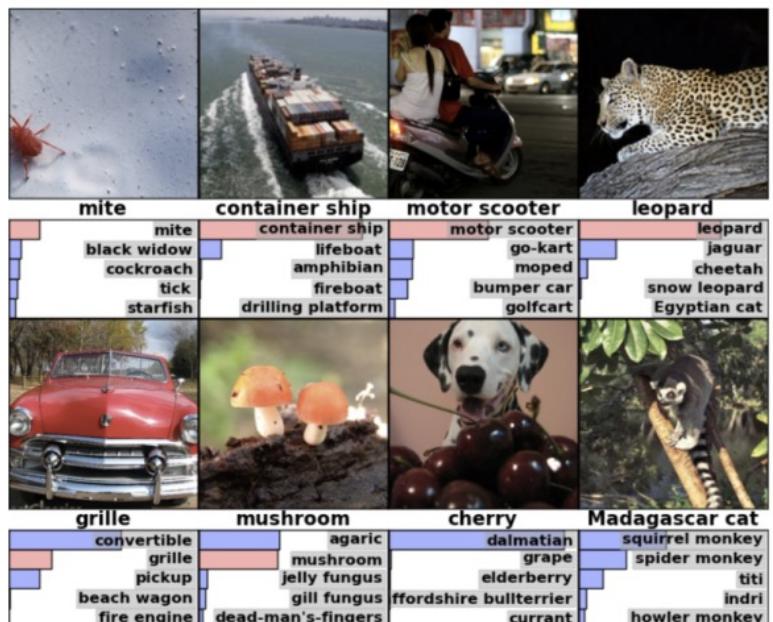
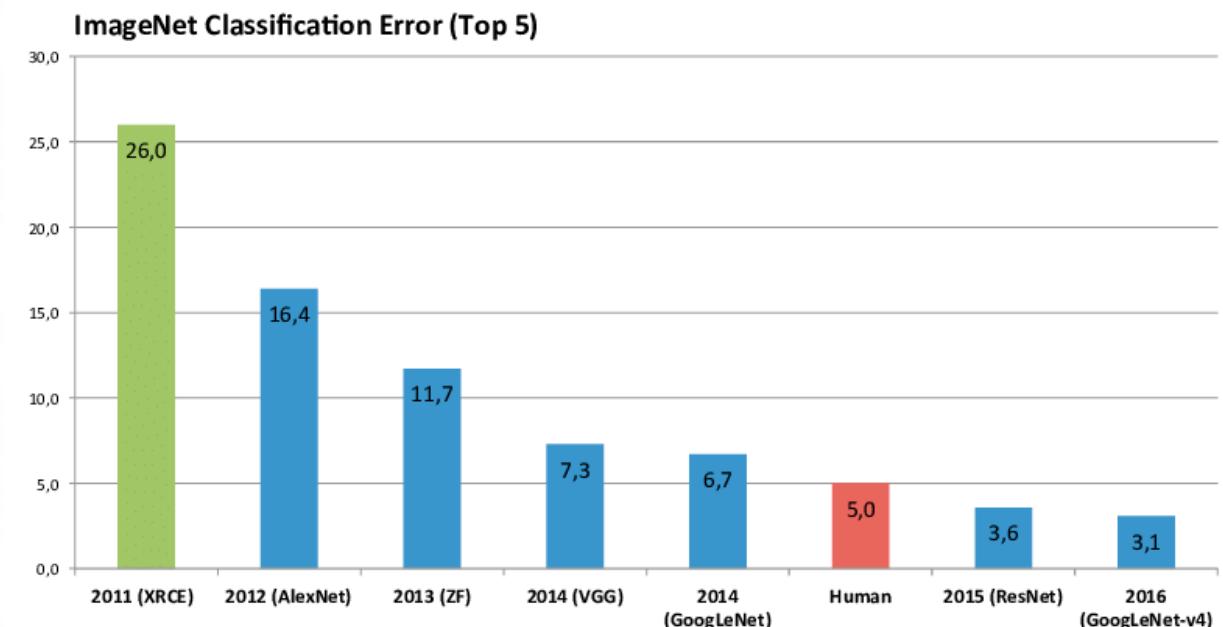


- [Computer Eyesight Gets a Lot More Accurate](#),
NY Times Bits blog, August 18, 2014
- [Building A Deeper Understanding of Images](#),
Google Research Blog, September 5, 2014



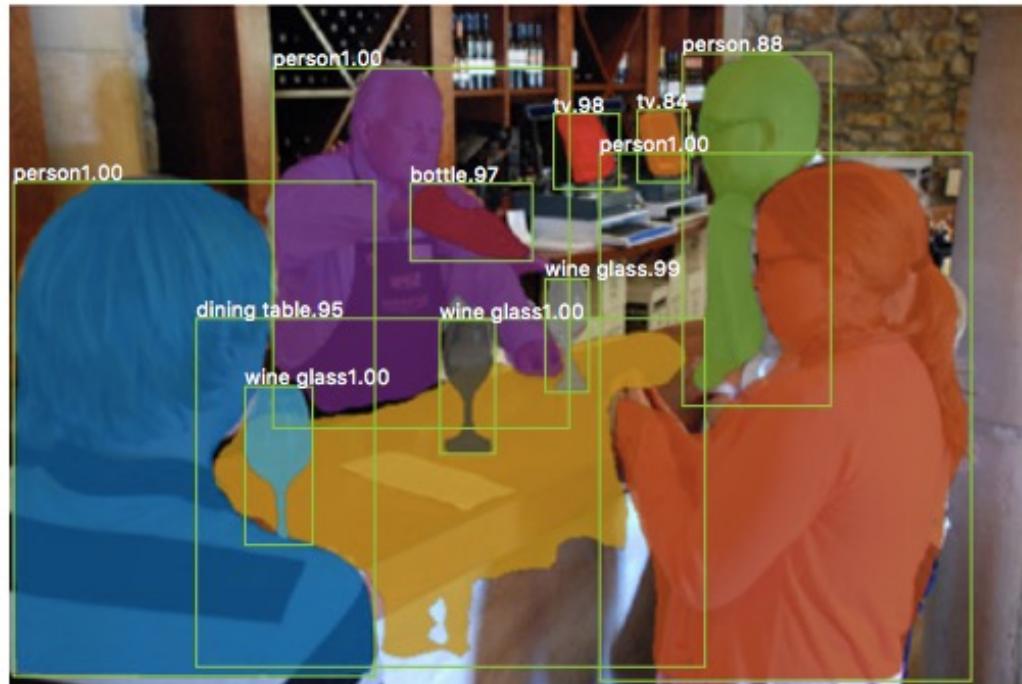
Recognition: General categories

ILSVRC



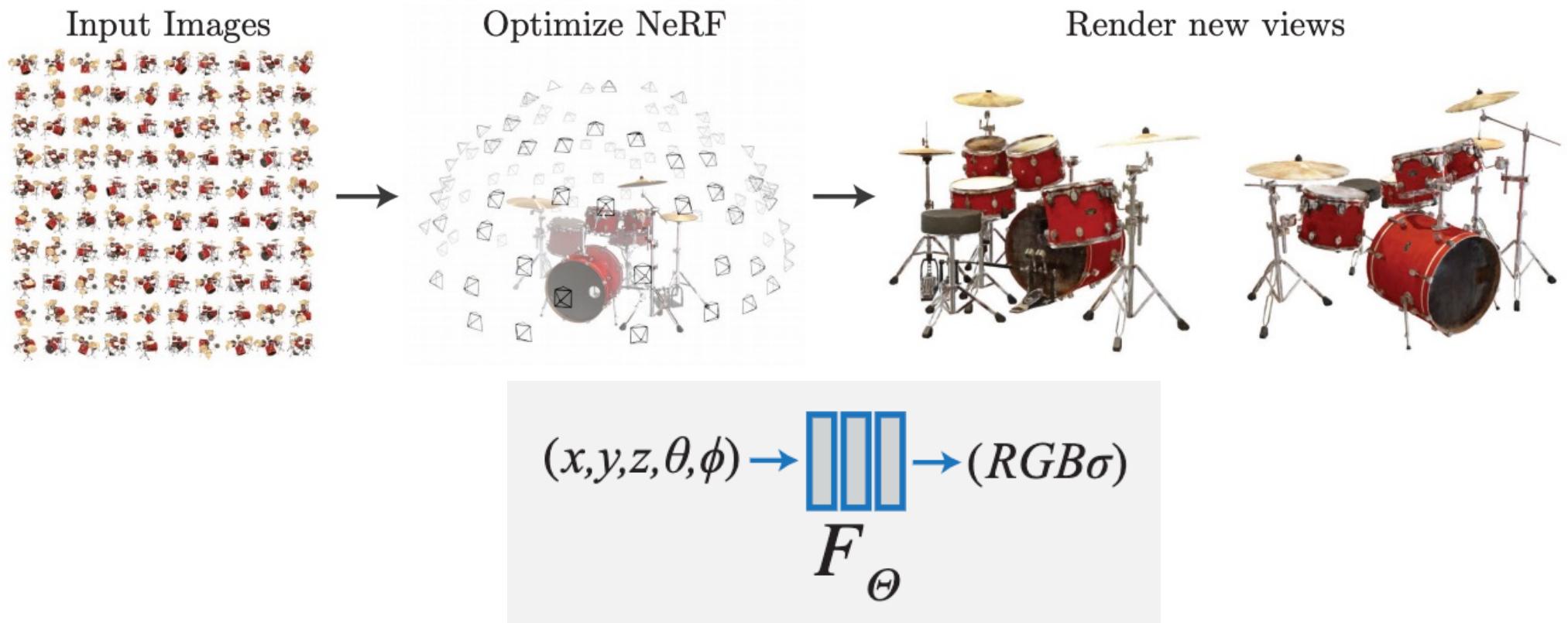
[Figure source](#)

Object detection, instance segmentation



K. He, G. Gkioxari, P. Dollar, and R. Girshick, [Mask R-CNN](#),
ICCV 2017 (Best Paper Award)

3D scene understanding: NeRFs



B. Mildenhall et al., [Representing Scenes as Neural Radiance Fields for View Synthesis](#), ECCV 2020

3D scene understanding: NERFs

B. Mildenhall et al., [Representing Scenes as Neural Radiance Fields for View Synthesis](#), ECCV 2020

3D scene understanding: Single-view reconstruction

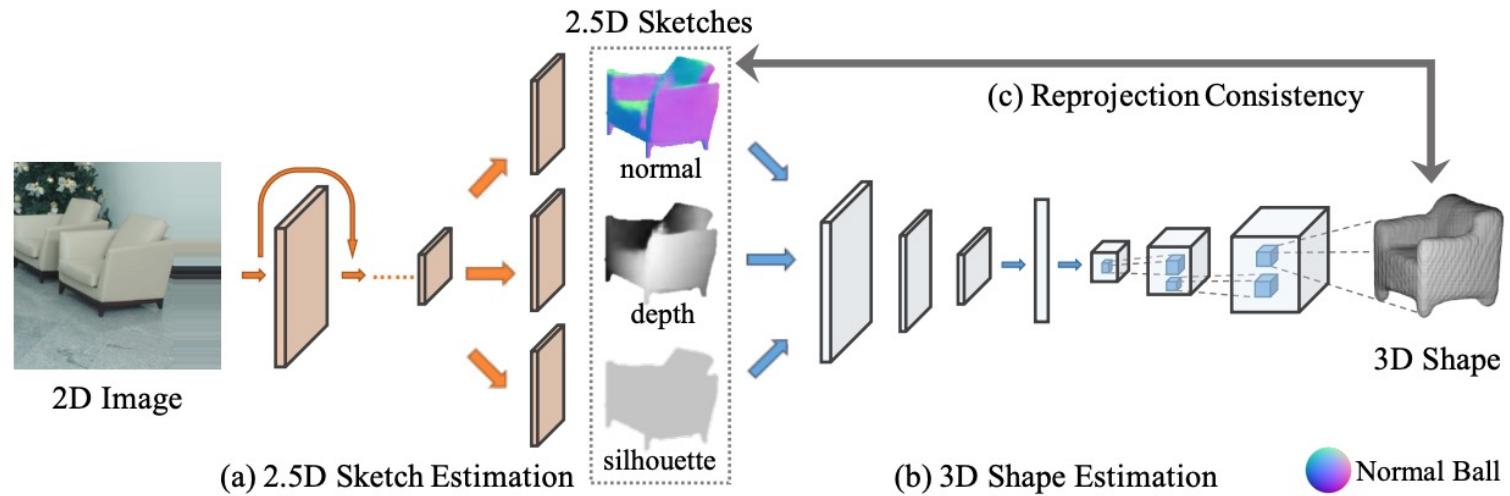


Figure 2: Our model (MarrNet) has three major components: (a) 2.5D sketch estimation, (b) 3D shape estimation, and (c) a loss function for reprojection consistency. MarrNet first recovers object normal, depth, and silhouette images from an RGB image. It then regresses the 3D shape from the 2.5D sketches. In both steps, it uses an encoding-decoding network. It finally employs a reprojection consistency loss to ensure the estimated 3D shape aligns with the 2.5D sketches. The entire framework can be trained end-to-end.

Image generation: Faces

- 1024x1024 resolution, CelebA-HQ dataset

T. Karras, T. Aila, S. Laine, and J. Lehtinen, [Progressive Growing of GANs for Improved Quality, Stability, and Variation](#), ICLR 2018

[Follow-up work](#)

Image generation: DeepFakes

Harrison Ford Is Young Han In Solo Deepfake Video

Thanks to deepfake technology, the maligned Solo: A Star Wars Story now stars Harrison Ford instead of Alden Ehrenreich as the young Han.

BY DAN ZINSKI
2 DAYS AGO

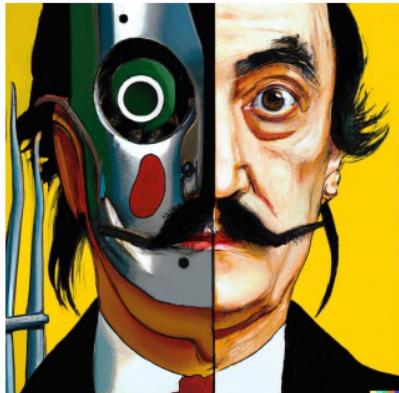
Just a random recent example...

<https://screenrant.com/star-wars-han-solo-movie-harrison-ford-video-deepfake/>

<https://www.youtube.com/watch?v=bC3uH4Xw4Xo>

<https://en.wikipedia.org/wiki/Deepfake>

Image generation: OpenAI DALL-E, DALL-E 2



vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation

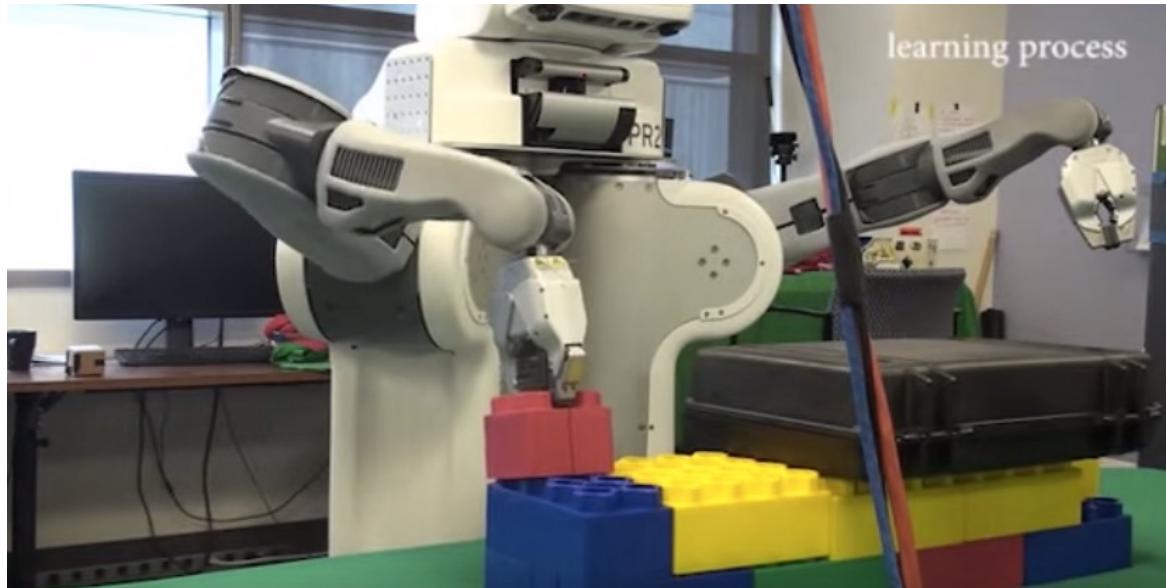
panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

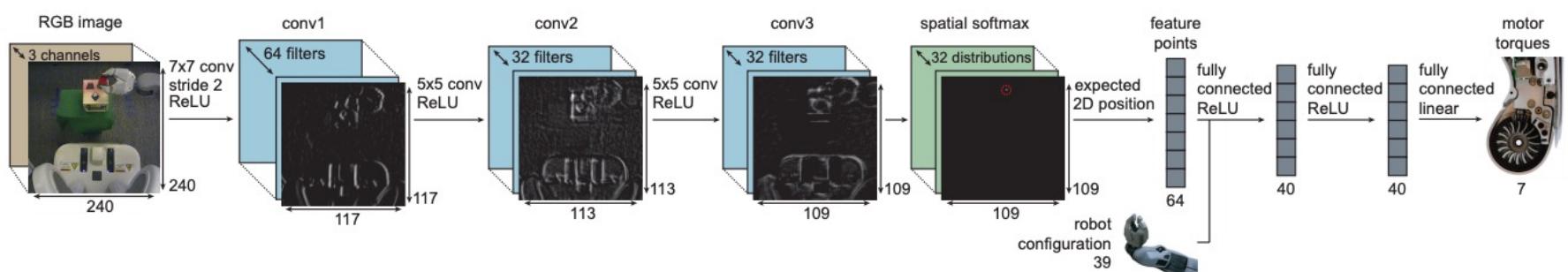
A. Ramesh et al., [Zero-Shot Text-to-Image Generation](https://openai.com/blog/dall-e/), ICML 2021. <https://openai.com/blog/dall-e/>

A. Ramesh et al., [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://openai.com/dall-e-2/), arXiv 2022. <https://openai.com/dall-e-2/>

Vision for action: Visuomotor learning



[Overview video](#),
[training video](#)

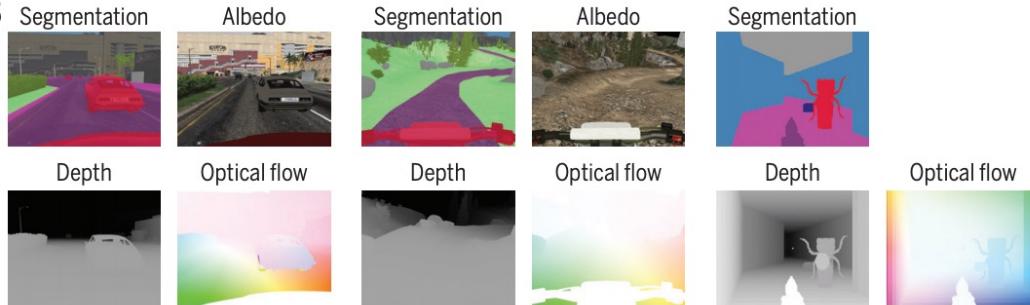


S. Levine, C. Finn, T. Darrell, P. Abbeel, [End-to-end training of deep visuomotor policies](#), JMLR 2016

Does computer vision matter for action?

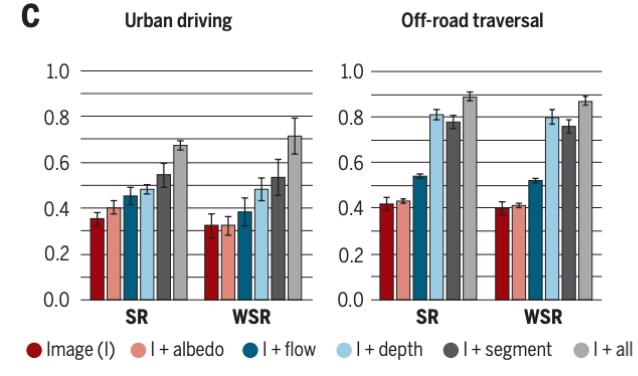
A

B

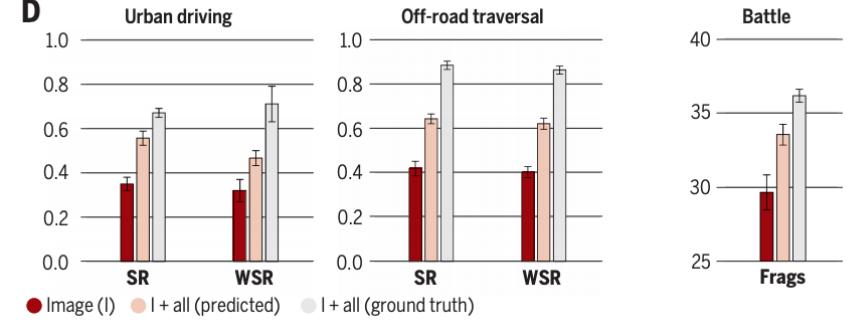


“Our main finding is that computer vision does matter. Models equipped with intermediate representations train faster, achieve higher task performance, and generalize better to previously unseen environments.”

C



D



B. Zhou, P. Krähenbühl, and V. Koltun, [Does Computer Vision Matter for Action?](#) Science Robotics, 4(30), 2019 ([video](#))

Vision for action: Learning skills from video

Fig. 1. Simulated characters performing highly dynamic skills learned by imitating video clips of human demonstrations. **Left:** Humanoid performing cartwheel B on irregular terrain. **Right:** Backflip A retargeted to a simulated Atlas robot.

[Video](#)

X. B. Peng, A. Kanazawa, J. Malik, P. Abbeel, S. Levine, [SFV: Reinforcement Learning of Physical Skills from Videos](#),
SIGGRAPH Asia 2018

Outline

- Logistics, requirements
- Goal of computer vision and why it is hard
- History of computer vision
- Current state of the art
- Topics covered in class

Topics covered in class

I. Elementary Image Representations:

Point transformations, geometric transformations, filters, denoising, edges, interest points

II. Mid-level vision:

Voting, Fitting, Registration

III. Learned Image Representations:

Learned denoising, Mapping images to images, Classification, Detection

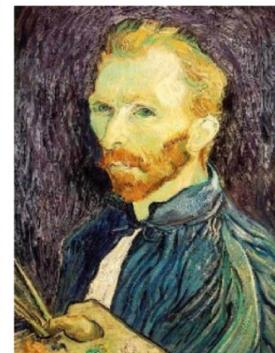
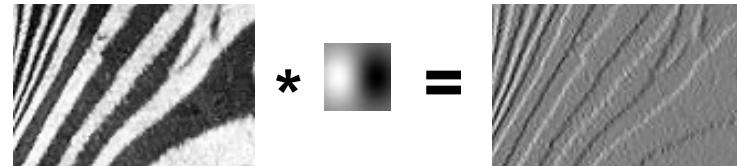
IV. Image formation and geometric vision

Cameras, Light, Color, Calibration

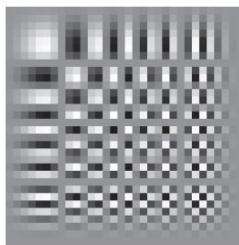
V. Pairs of Cameras and more:

Geometry, Odometry, Optic Flow, Stereopsis, Structure from Motion, Tracking

Elementary image representations



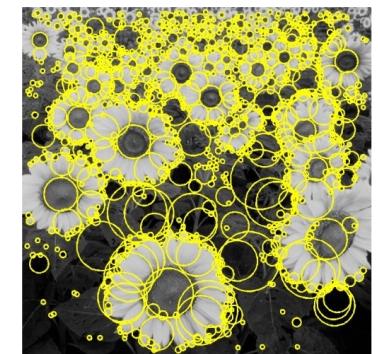
Linear filtering
Edge detection



Basic image processing

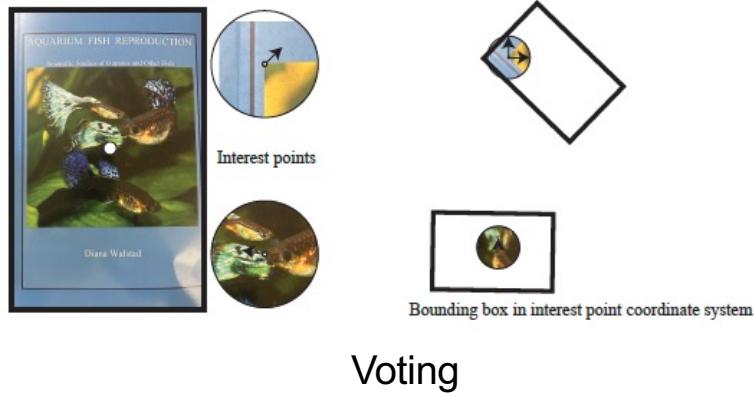
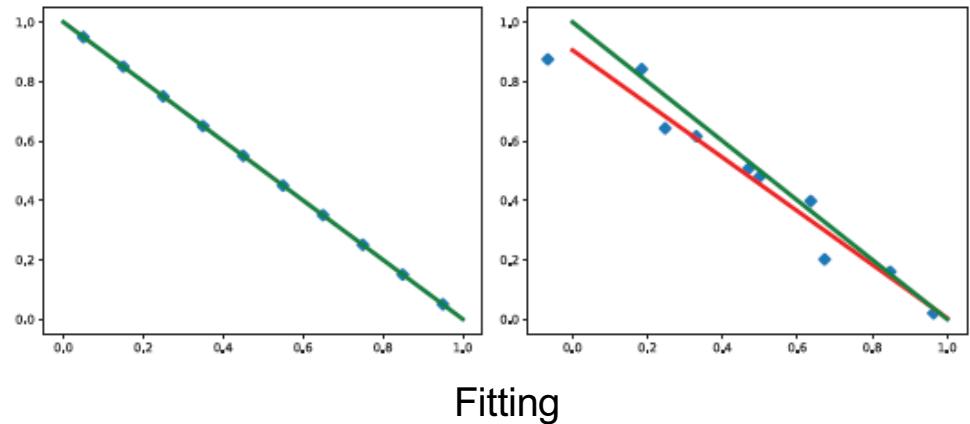
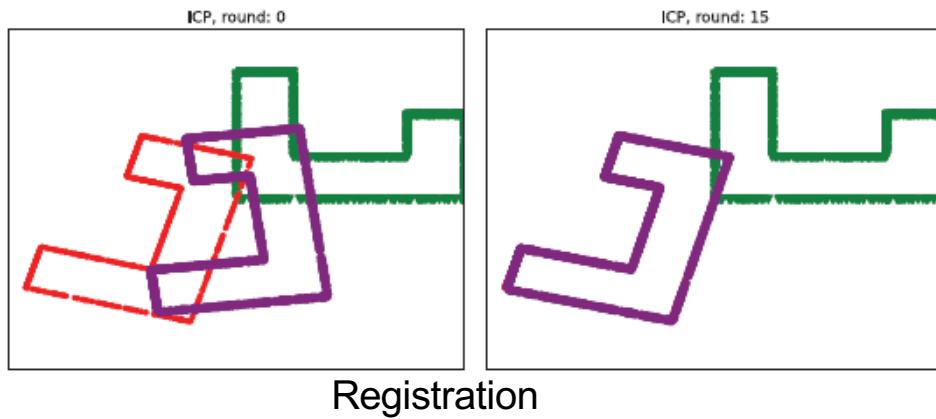
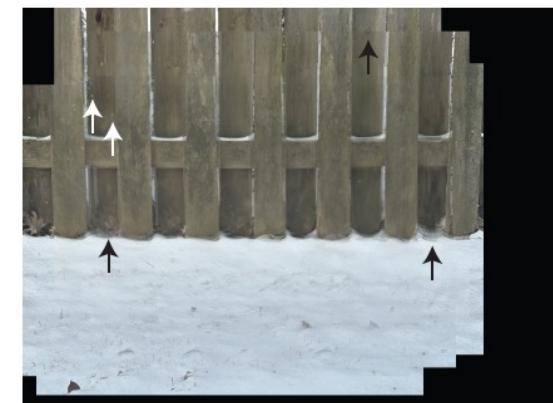
Upsampling and downsampling

downsampled by 8



Feature extraction

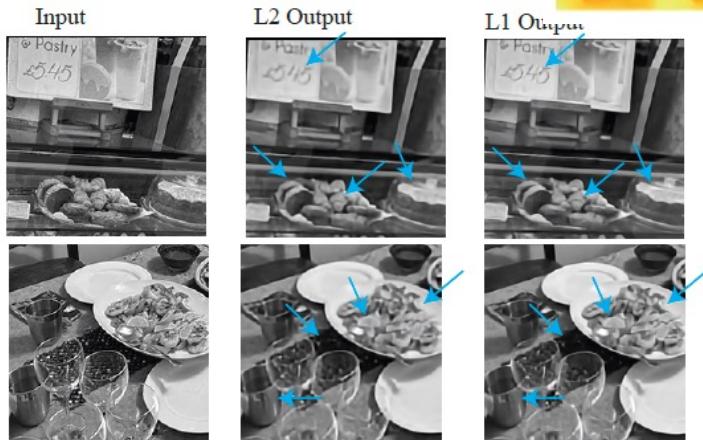
Mid-level Vision



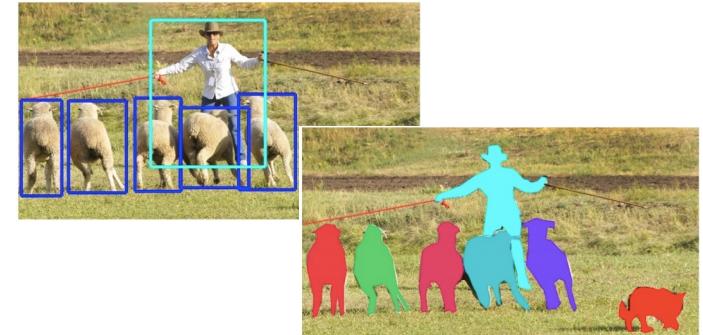
Mosaics

Learned Image Representations

Depth, normal, etc
From images

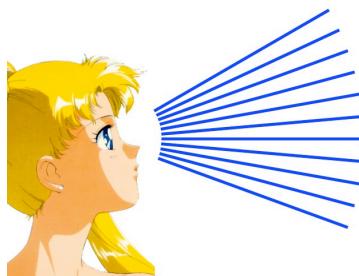


Learned denoising

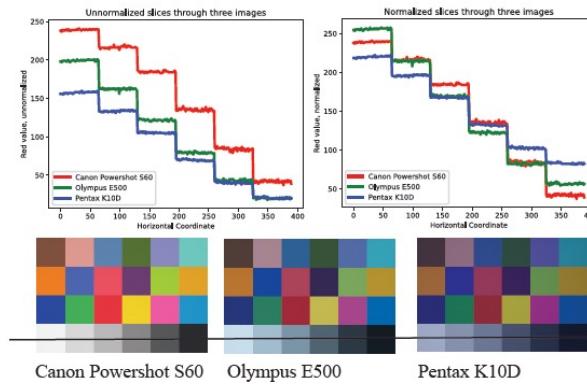


Object detection and segmentation

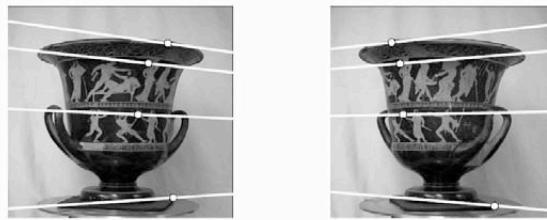
IV. Image formation and geometric vision



Cameras and sensors



V. Pairs of cameras and more



Two-view geometry, stereo

Structure from motion



Multi-view stereo