Smoothing and
Downsampling Images

D.A. Forsyth,

University of lllinois at Urbana Champaign

Doing the obvious

* The obvious:
* Inverse warp, interpolating as required

Reducing the size of an image by a fixed factor in each dimension is downsampling.
Downsampling an image appears to be straightforward. Just like upsampling, the
correct procedure is to scan the target image and, for each pixel, determine what
value it should receive using interpolation. If you downsample by an integer amount
(say, a factor of 2), you don’t even need to interpolate. But downsampling an image
like this can produce something that represents the image very poorly indeed. To
see this, take an image whose dimensions are divisible by two (or four, or eight, and
so on) then halve (or quarter, and so on) the size. To do this, you can simply take
every second (fourth, eighth, and so on) pixel in each direction. Figure 3.3 shows
effects that occur. Fine details can disappear or worse turn into coarse details.

works badly!

_downsampled by 4 downsampled by 8

Underlying mechanism

Pooling or averaging might help

Weighted average -> better representation

Unweighted Weighted

Gaussian weights

A traditional weighting scheme is given by a one parameter family of functions,
derived from the normal distribution and widely called gaussians. The parameter
o 1s sometimes called the scale and more usually called the sigma of the weights.
For downsampling by two, 0 = 1 or o = 1.5 are fair choices. In a 2k +1 x 2k + 1
window, where the pixels are indexed starting at 1, the weights will be:

1
| G=k=1)24(i—k—1)2
kij = ée (207)
4-

2-
8.

Just averaging is actually a bad idea

Averaged, Weighted average,
subsampled x2 subsampled x2

I
HHage Downsample x2,

no smoothing

Weights

Just averaging is actually a bad idea

Original Unweighted average Gaussian filtered

Easy case: downsample by two

Procedure: 3.2 Downsampling by Two with Gaussian Smoothing

Given a source image S, size M x N, construct a target image 7, size
floor(M/2) x floor(IN/2). Adopt the convention that for w or v out
of range, Sy, = 0. Choose k (likely 3 or 4) and o (likely 1 or 1.5).
Construct a Gaussian kernel G using these parameters. Now for each
1 <i<floor(M/2), 1< j < floor(N/2), set

s=k t=k

Tii= Y | D [S@its)@itnG stk @tk
s=—k Lt=—k

Downsample by small factor

You wish to downsample by a small factor, so taking an M x N image toa R x S
image where 2 > M/R > 1, and N/S is very close to M/R. Doing so requires
smoothing, and it is sensible to use Gaussian weights with a small o (between 1
and 2, depending on the application). But doing so also requires interpolation,
as the downsampling will require values that aren’t on the source grid. Interpola-
tion should strike you as likely to interact inefficiently with the weighting process.
A straightforward procedure yields a pre-smoothed version of the original image,
which you can then downsample using backward warping and interpolation.

Downsample by small factor

* Smooth image,
then
downsample

Procedure: 3.3 Downsampling an 1mage by a small factor

Take the source image S, and form a new image N from that source.
The 7, j'th pixel in N is now a weighted average of a (2k+1) x (2k+1)
window of pixels in &, centered on i, 7. Organize the weights into
a small array — the mask, which you could obtain by evaluating the
Gaussian, as above — and form a new image N from the original image
and the mask, using the rule

-/V;lj — Z Ii—u,j—kuv

This expression is the root of all sorts of interesting ideas (Chapter 5).
There are some problems when ¢ or j or w or v are too big or too
small. Deal with these by asserting that Z and W are zero for locations
outside the range. Evaluate N on an M x N grid. Now downsample
using backward warping and interpolation.

Downsampling by a big factor

Now consider downsampling by a large factor. You could (but shouldn’t) smooth
with a gaussian with large o, then downsample. This is not a good idea, because
the support of the gaussian is infinite, meaning that working with a 2k +1 x 2k +1
window involves some truncation. As o gets bigger, £ will need to get bigger to
keep this truncation reasonable, so the smoothing process will be expensive. The
more efficient alternative is to smooth, downsample by two, then smooth the result
and downsample that by two and so on, until the image size is only slightly larger
than what you want. Then downsample that by a small factor.

Gaussian pyramid

Procedure: 3.4 Building a Gaussian pyramid

Write D, for the operation that smoothes an image with a gaussian of
scale o then downsamples it; U for the operation that upsamples an
image; and Gy for the £’th layer of a gaussian pyramid. This notation
suppresses by how much the image is downsampled, and what particular
interpolation you use in upsampling, because these aren’t important
here. An N level gaussian pyramid then can be written as:

Gy = 1

G.P.

“&.ﬁ
o - &

ISP A

sEecEEw

/// \&
¥

Laplacian pyramid

» Gaussian pyramids are redundant /=) /=) //ﬁ“@“éa f
512 - >256 o 128& 7 64 o 32 - i6 - 8 I

"&E

3

3
¢

Laplacian pyramid

Procedure: 3.5 Building a Laplacian pyramid

Write D, for the operation that smoothes an image with a gaussian of
scale o then downsamples it; U for the operation that upsamples an
image; and Gj for the £’th layer of a gaussian pyramid. An N level
laplacian pyramid can be written as:

Li = Gy—-U(Dy,(Gy))
Ly = Gr—U(Ds(Gg))

Ly = Gpy.

Gaussian vs Laplacian
_512 | | 32

Things to think about...

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

Can the effects of Figure 3.3 be controlled by interpolating before downsam-
pling? Why?
Recall the weights for Gaussian smoothing take the form

1 - (i—k—1)24(j—k—1)2
k" _ = 202
’I/J - Ce .

Assume k > 5. What do you expect will happen if you use

1 - (i—k—2)24(—k—2)2
ki = —e 207
1] C g

instead?

Imagine you decide to store each intensity image as a Gaussian pyramid, down-
sampling by 2. What is the worst (reasonable!) case for how much more space
it will take?

Imagine you decide to store each intensity image as a Laplacian pyramid,
downsampling by 2. Do you expect the pyramid to take a lot more space than
the original image? Why?

You wish to downsample an image by a factor of 9 in each direction. How
should you do this efficiently?

The coarsest scale images of Figure 3.10 have visible dark bars on some edges.
Where do these come from?

