

Geometric transformations

D.A. Forsyth,
University of Illinois at Urbana Champaign

Notation

There are a number of important and useful geometric transformations of the plane that can be applied to images. Image transformations are implemented in the same way as subsampling: by scanning the pixels of the target and modifying them using interpolates of pixels from the source. This means it is important that transformations are invertible. Adopt the convention that a point $\mathbf{x} = (x, y)$ is mapped by a transformation to the point $\mathbf{u} = (u, v) = (u(x, y), v(x, y))$, and $\mathbf{u} = (u, v)$ is mapped to $\mathbf{x} = (x, y)$ by the inverse. In vector notation, \mathbf{x} is mapped to \mathbf{u} , and so on. Write \mathbf{A} for a 2×2 matrix, whose i, j 'th component is a_{ij} .

Translation

Definition: 4.1 *Translation*

Translation maps the point (x, y) to the point $(u, v) = (x + t_x, y + t_y)$ for two constants t_x and t_y . Here $(x, y) = (u - t_x, v - t_y)$. In vector notation,

$$\mathbf{u} = \mathbf{x} + \mathbf{t} \text{ and } \mathbf{x} = \mathbf{u} - \mathbf{t}.$$

Useful Fact: *Translation preserves lengths and angles. Choose two points \mathbf{x}_1 and \mathbf{x}_2 . The squared distance from \mathbf{x}_1 to \mathbf{x}_2 is $(\mathbf{x}_1 - \mathbf{x}_2)^T(\mathbf{x}_1 - \mathbf{x}_2)$; but for a translation $(\mathbf{u}_1 - \mathbf{u}_2) = (\mathbf{x}_1 - \mathbf{x}_2)$. A similar argument shows that angles are preserved (exercises).*

Definition: 4.2 *Rotation*

Rotation takes the point (x, y) to the point

$$(u, v) = x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta.$$

Here θ is the angle of rotation, rotation is anti-clockwise, and

$$(x, y) = u \cos \theta + v \sin \theta, -u \sin \theta + v \cos \theta.$$

Write \mathcal{R} for a 2×2 rotation matrix (a matrix where $\mathcal{R}^T \mathcal{R} = \mathcal{I}$ and $\det(\mathcal{R}) = 1$); then

$$\mathbf{u} = \mathcal{R} \mathbf{x} \text{ and } \mathbf{x} = \mathcal{R}^{-1} \mathbf{u} = \mathcal{R}^T \mathbf{u}.$$

Useful Fact: *Rotation preserves lengths and angles. Choose two points \mathbf{x}_1 and \mathbf{x}_2 . The squared distance from \mathbf{x}_1 to \mathbf{x}_2 is $(\mathbf{x}_1 - \mathbf{x}_2)^T (\mathbf{x}_1 - \mathbf{x}_2)$; but for a rotation $(\mathbf{u}_1 - \mathbf{u}_2) = \mathcal{R}(\mathbf{x}_1 - \mathbf{x}_2)$ and $\mathcal{R}^T \mathcal{R} = \mathcal{I}$. A similar argument shows that angles are preserved (exercises).*

Definition: 4.3 *Euclidean transformations*

A **Euclidean transformation** is a rotation and translation, so $(u(x, y), v(x, y)) = (x \cos \theta - y \sin \theta + t_x, x \sin \theta + y \cos \theta + t_y)$. Euclidean transformations preserve lengths and angles (and so areas) and are sometimes referred to as rigid body transformations. Here $(x, y) = ((u - t_x) \cos \theta + (v - t_y) \sin \theta, -(u - t_x) \sin \theta + (v - t_y) \cos \theta)$. In vector notation, for \mathcal{R} a rotation,

$$\mathbf{u} = \mathcal{R}\mathbf{x} + \mathbf{t} \text{ and } \mathbf{x} = \mathcal{R}^T(\mathbf{u} - \mathbf{t}).$$

Useful Fact: *Euclidean transformations preserve lengths and angles (you can think of a Euclidean transformation as a rotation followed by a translation).*

Definition: 4.4 *Uniform scaling*

For **uniform scaling**, $(u, v) = (sx, sy)$ for $s > 0$. Here $(x, y) = (1/su, 1/sv)$. In vector notation,

$$\mathbf{u} = s\mathbf{x} \text{ and } \mathbf{x} = (1/s)\mathbf{u}.$$

Useful Fact: *Uniform scaling preserves angles, but not lengths (exercises). Uniform scaling preserves ratios of lengths (exercises)*

Definition: 4.5 *Non-uniform scaling*

For **non-uniform scaling**, $(u, v) = (sx, ty)$ for s and t both positive, and so $(x, y) = (1/su, 1/tv)$. Write $\text{diag}((s, t))$ for the matrix with s and t on the diagonal. In vector notation,

$$\mathbf{u} = \text{diag}((s, t))\mathbf{x} \text{ and } \mathbf{x} = \text{diag}((1/s, 1/t))\mathbf{u}.$$

Useful Fact: *Non-uniform scaling will usually change both lengths and angles.*

Definition: 4.6 *Affine transformations*

Affine transformations are better written in vector notation. Write \mathcal{A} for an invertible 2×2 matrix, and \mathbf{t} for some constant vector. Then

$$\mathbf{u} = \mathcal{A}\mathbf{x} + \mathbf{t} \text{ and } \mathbf{x} = \mathcal{A}^{-1}(\mathbf{u} - \mathbf{t}).$$

Useful Fact: *Affine transformations will usually change both lengths and angles.*

Definition: 4.7 *Projective transformations*

Projective transformations involve quite inefficient notation if one does not know homogenous coordinates (Section ??), and writing them in vector form is clumsy. Write p_{ij} for the i, j 'th component of a 3×3 matrix \mathcal{P} that is invertible. Then

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \frac{p_{11}x + p_{12}y + p_{13}}{p_{31}x + p_{32}y + p_{33}} \\ \frac{p_{21}x + p_{22}y + p_{23}}{p_{31}x + p_{32}y + p_{33}} \end{bmatrix}.$$

The inverse transformation is obtained by applying the inverse of \mathcal{P} to \mathbf{u} according to the recipe above. For a vector representation, write

$$\mathcal{P} = \begin{bmatrix} \mathbf{p}_1^T & p_{13} \\ \mathbf{p}_2^T & p_{23} \\ \mathbf{p}_3^T & p_{33} \end{bmatrix}$$

for a 3×3 array with inverse \mathcal{Q} . Then

$$\mathbf{u} = \begin{bmatrix} \mathbf{p}_1^T \mathbf{x} + p_{13} \\ \mathbf{p}_2^T \mathbf{x} + p_{23} \\ \mathbf{p}_3^T \mathbf{x} + p_{33} \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} \frac{\mathbf{q}_1^T \mathbf{u} + q_{13}}{\mathbf{q}_3^T \mathbf{u} + q_{33}} \\ \frac{\mathbf{q}_2^T \mathbf{u} + q_{23}}{\mathbf{q}_3^T \mathbf{u} + q_{33}} \end{bmatrix}$$

This definition means that, if $\mathcal{P} = \lambda \mathcal{Q}$ for some $\lambda \neq 0$, then \mathcal{P} and \mathcal{Q} implement the same projective transformation.

- All the transformations are special cases of projective transformations

Things to think about

- 4.1. Which transformations preserve angles?
- 4.2. Which transformations preserve lengths?
- 4.3. Could there be a family of transformations that preserves lengths, but not angles? Why?
- 4.4. Assume that the 2×2 matrix \mathcal{N} has the property $\mathcal{N}^T \mathcal{N} = \mathcal{I}$ and $\det(\mathcal{N}) = -1$. Check that there is some rotation \mathcal{R} such that $\mathcal{N} = \mathcal{R}\text{diag}((1, -1))$.
- 4.5. What happens if you apply $\text{diag}((1, -1))$ to an image?
- 4.6. Figure 4.1 shows two image coordinate systems. What transformation takes the coordinates of a point in the left-hand coordinate system to the coordinates of the same point in the right-hand coordinate system?
- 4.7. Write \mathcal{R} for a rotation matrix. Show that the transformation that takes \mathbf{x} to $\mathcal{R}(\mathbf{x} - \mathbf{t}) + \mathbf{t}$ is a rotation about the point \mathbf{t} .