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Nuisances in applying geometric tx to images

* Image coordinate systems are weird

* You have to *put* an image somewhere

* Very often, the transformation you have in mind puts the image outside
the span of the target
* what to do?



Image coordinate systems

I’ll use this one, cause everyone does
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You might think in terms of this one,
though - keep them straight
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To add to the fun, in some API’'s images run 0..M-1 (Python, etc) and in others they run 1..M (Matlab).
Keep an eye on this point, or you will lose pixels or have code errors.



Inverse warping requires a little care...

Transformations always take a source image & which 1s s); X sy to a target
image 7 which 1s tp; x tn. I will need to refer to image values both at integer
points — which I will write §;; — and at points that are possibly not integer points
— S8(z,y). For points that are not integer points, care is required. If 1 < z < sy
and 1 < y < sy, then §(z,y) can be obtained by interpolation. Otherwise, some
care 1s required.

As in Section 3.1, the correct general procedure is to scan the pixels of 7 and
then modify them using interpolates of pixels from &. This means it 1s important
that transformations are invertible, and both (u(z,y),v(z,y)) and (z(u,v), y(u,v))
are known. If you require that the value of S(z,y) is known if 1 < z < s, and
1 < y < sy, the image might shrink when you translate it. Figure 4.2 illustrates
this effect. The source 1image has been translated to the green location. If you scan
the target image (the bigger grid), and report a known value for S(z,y) only if
1 <z <s) and 1 <y < sy, you will lose pixels (exercises ).



Losing pixels when inverse warping
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You could mitigate this effect by padding the source image so that you know
pixel values for 0 < z < spy and 0 <y < sy. An easy way to do this is to attach a
copy of the top row to the top of the image, and the leftmost column to the left of
the image. More sophisticated mitigations are out of scope.



Cropping, translating and pasting

632




Blending

 Canimprove over pasting

Blended

Mask



Scaling

* Uniform scaling
* we did that!
e upsampling — scale by k>1
 downsampling — scale by k<1
* Non uniform scaling

* can be a nuisance
* upsampling in one direction, downsampling in the other!



Rotation

* Rotating about the origin can
lead to trouble (-90, 164)

* pixels leave the span '\e
20,1
(0,0\), ©. 1) ) 0.0)

e Common fix in APIs
* rotate about the center of the
image
* pixels still leave the span 1,0 Y

* Choices:
* all (bigger image, lots of zeros)
e same (crop to original)

(52,241)

(162, 0)

Y



Rotation: Interpolation matters

Nearest Neighbors Bilinear




Affine transformations

* Problems
* There is often a non-uniform scaling inside the matrix

* Image could end up outside target image range
* what to do?
* usually, figure out target image range from affine tx.

Affine transformations follow the recipe for the rotation. However, an affine
transformation may involve a component of scaling, which might be non-uniform.
One way to see this is to apply a singular value decomposition to A which will yield

A=UuxyT

where U and V are rotations. But X is diagonal, and may be non-uniform. As long
as the values on the diagonal of ¥ are not too different, and the smallest is not too
small, then one can apply a gaussian smoother to the source, and resample with
interpolation. A robust smoothing strategy is firmly beyond scope, however.



Affine transformation
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Projective transformations

* Problems
* There is often a non-uniform scaling inside the matrix
* Possible divide by zero

* Image could end up outside target image range
* what to do?
* usually, figure out target image range from affine tx.

Projective transformations follow the same general recipe as rotations, but
smoothing i1s now tricky. For a general projective transformation, there might be
singular points, caused by a divide-by-zero. For geometric reasons, these projective
transformations do not arise in cases interesting to us (Section 23.6), and should be
seen as evidence of a problem elsewhere. Nasty smoothing problems occur because
at some pixels a projective transformation may upsample an image and at different
pixels downsample the image. For this effect, look at Figure 4.8 and consider what



Projective transformation

(0, 2*187/3) Nearest eigbrs Bilinear
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Simple registration with translation

* Color separations:




Simple registration with translation

* Fix Gin place
* for many (tx, ty)
* slide R by tx, ty

 compute C(tx, ty)
* which compares overlaps

* take the (tx, ty) that gives best overlap

° Q:
* whatis cost?
e other applications?
* efficiency?



Cost functions: SSD

Definition: 4.8 The sum of squared differences or SSD

The sum of squared differences or SSD scores the similarity between
two images U and V of the same size (N x M pixels) by

SSD(U.,V) = Z (Rij — Bij)?.

For different offsets, the number of overlapping pixels is different. Given an
offset m, n, shift B by that offset. Write B, for the set of pixels in this shifted
version of B that overlap R. Write R, for the pixels in R that are overlapped by
the shifted version of B. Write NN, for the number of pixels in the overlap. Then
use the cost function

1
Creg(m,n;R,B) = —SSD(R,, B,)>.
S No
Notice that normalizing by N, is important; if you don’t, you will find that the
best match occurs when the overlap is smallest.




Cost functions: cosine dist and correlation

Definition: 4.9 The cosine distance

The cosine distance scores the similarity between two images U/ and )
of the same size (N x M pixels) by

ConaU,V) = > (Aij * Bij)

E A e

Definition: 4.10 The correlation coefficient

The correlation coefficient scores the similarity between two images U
and V of the same size (M x N pixels) by

E [(Aij — [ia) * (Bz'j - #B)]
\/Z (Aij — MA)z\/E (Bij — 1)

1
where HA = UN Z A;; and

Ceorr (m, n) =

1
where KB = m Z B’L]

overlap

You compute these for the overlap



Cost functions

Squared error

Correlation Cosine distance
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Find the chicken

* Simplest object
detection
* notvery good
* can be fast

Target Cosine Correlat1on

:---
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Think about this...

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

Section 4.2.4 has “ As long as the values on the diagonal of ¥ are not too
different, and the smallest is not too small, then one can apply a gaussian
smoother to the source, and resample with interpolation.” Explain.

Is the transformation that takes (z,y) to ((50x)/(x — 100), (50y)/(z — 100)) a
projective transformation?

For pixels near (25, 25), does the transformation that takes (z, y) to ((50z)/(z—
100), (50y)/(x — 100)) upsample or downsample an image?

For pixels near (75, 75), does the transformation that takes (z, y) to ((50z)/(z—
100), (50y)/(x — 100)) upsample or downsample an image?

Section 4.3.1 says: “ Notice that normalizing by N, is important; if you don’t,
you will find that the best match occurs when the overlap is smallest.” Explain.
Explain why you don’t need to normalize the cosine distance by the size of the
overlap (Section 4.3.1).



