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Image representations - Encoding

ldea:
* Filter banks + RelLU yield scores for many different patterns

ldea:

* You can compose this, so patterns of patterns of ...
* Result: a code that describes the image

ldea:

* if filters are well chosen, you could use the representation to:
denoise images

find edges

find interest points

classify images...

BUT what filters/patterns should we use?



Many different pattern detectors

* Yield an overcomplete representation
* redundant information

* one local image patch is scored against many
different patterns

* downside:
* representation is larger

* upside:

* YyOU can recover image despite some errors in
representation



Reconstruction

* Find the image that produces the representation
closest to the one observed

* Now imagine input image is noisy:
* The reconstruction might not be
* (with some care and some luck)

e |dea:

* Build device that can accept noisy image, produce
clean

* Denoising autoencoder

Helps choose filters/patterns — the ones that denoise



Images from codes - Decoding

* |dea:
e Code likely (roughly) invertible
* Reconstruct filter responses from RelLU outputs
* Reconstruct image from responses (conv. Theorem)
* Decode by:
* Place down instances of detected patterns
* Thisisfiltering
* Use a RelLU to prevent negative values accumulating



Learned Image Representations

e |dea:

* [t might be possible to produce an image
representation from a lot of filters

* AND reconstruct the image from the representation
using a lot more filters



Recall convolution




Recall Convolution + RelLU =
pattern detector




Recall Multi-channel Convolution




Recall padding
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Stride

* How far across/down to go to the next pixel?
e Stride 1: whatwe’re used to

e Stride 2: place the kernel on every second pixel



Convolutional Layers
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Convolutional Layers

AN

Kemel block 2

Kemel block 1

Output size will be determined by:
input size,
kernel size,
padding,
stride,



RelLU operates on data block

* Trivially — just ReLU at each location



A very simple encoder
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As data blocks

Number of features x Xdim x Ydim

X
x4Sx4T 256xSxT
64x4Sx4T 128x25x2T
Image
s ~ Data blocks
A f I
. . :
Image —p |~ —> |- —> | —>
“ o6 b
3 Q l o
. - x‘
(o 3 ol
v + v Layers



Receptive fields
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Decoding

* Want:
* map rep’n (patterns of patterns of patterns...) to image

* Have:
* If rep’nis filter outputs, convolution is enough
* Rep’nis spatially smaller than image

* |dea:
* Filter+RelLU+upsample on occasion might do it



A decoder
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Big iIdea

* With the right choice of filters

* adecoder could reconstruct an image from an
encoders rep’n

* The rep’nis overcomplete
* “sees” the image at many scales
* so the pair should be able to denoise

* But what is the right choice of filters?

Choose filters/patterns that denoise



Things to think about...

17.1.

17.2.

17.3.

17.4.

17.5.

You are given a filtered image. How would you recover the original? what
might go wrong?

A multichannel convolution with stride 1, kernel size 2d + 1, padding d and
Ny filters accepts an N; X X XY block. How big is the block that comes out?
A multichannel convolution with stride 2, kernel size 2d + 1, padding d and N,
filters accepts an N; x 2X x 2Y block. How big is the block that comes out?
A multichannel convolution with stride 1, kernel size 2d+ 1, padding 0 and N,
filters accepts an N; X X X Y block. How big is the block that comes out?

A convolutional layer with stride 1 and kernel size 2d 4+ 1 is followed by a
second convolutional layer with stride 1 and kernel size 2d + 1. How big is the
receptive field for a feature in the second layer?



