Encoding and Decoding

D.A. Forsyth

University of lllinois at Urbana Champaign

Image representations - Encoding

ldea:
* Filter banks + RelLU yield scores for many different patterns

ldea:

* You can compose this, so patterns of patterns of ...
* Result: a code that describes the image

ldea:

* if filters are well chosen, you could use the representation to:
denoise images

find edges

find interest points

classify images...

BUT what filters/patterns should we use?

Many different pattern detectors

* Yield an overcomplete representation
* redundant information

* one local image patch is scored against many
different patterns

* downside:
* representation is larger

* upside:

* YyOU can recover image despite some errors in
representation

Reconstruction

* Find the image that produces the representation
closest to the one observed

* Now imagine input image is noisy:
* The reconstruction might not be
* (with some care and some luck)

e |dea:

* Build device that can accept noisy image, produce
clean

* Denoising autoencoder

Helps choose filters/patterns — the ones that denoise

Images from codes - Decoding

* |dea:
e Code likely (roughly) invertible
* Reconstruct filter responses from RelLU outputs
* Reconstruct image from responses (conv. Theorem)
* Decode by:
* Place down instances of detected patterns
* Thisisfiltering
* Use a RelLU to prevent negative values accumulating

Learned Image Representations

e |dea:

* [t might be possible to produce an image
representation from a lot of filters

* AND reconstruct the image from the representation
using a lot more filters

Recall convolution

Recall Convolution + RelLU =
pattern detector

Recall Multi-channel Convolution

Recall padding

Padding >
strip

MXN
image

M-2uXN-2v
valid region

2u+l X 2v+1
kernel

Stride

* How far across/down to go to the next pixel?
e Stride 1: whatwe’re used to

e Stride 2: place the kernel on every second pixel

Convolutional Layers

Convolutional Layers

Kemel block 2 |
y X
Feature
map 2
Y

\ » :
\\ -
Output number
Feature

\

\

1 Ni of features
map Input number

Kermel block 1 of features

Convolutional Layers

AN

Kemel block 2

Kemel block 1

Output size will be determined by:
input size,
kernel size,
padding,
stride,

RelLU operates on data block

* Trivially — just ReLU at each location

A very simple encoder

RelLU
X X X

— Mﬂ

v—:\ (\]‘\ (\]ﬂ

Image —p | — —> o o)
o o \O

N o e,

<t A N

O '_; o0

e N S

T

\4

Input number of features, output number of features, kernel size, padding, stride

Patterns of patterns of
patterns

Layers

As data blocks

Number of features x Xdim x Ydim

X
x4Sx4T 256xSxT
64x4Sx4T 128x25x2T
Image
s ~ Data blocks
A f I
. . :
Image —p |~ —> |- —> | —>
“ o6 b
3 Q l o
. - x‘
(o 3 ol
v + v Layers

Receptive fields

 Support for a value in the feature map
—>

l Layers
LN

Receptive
Fields

Image —)

<«
3,64,3,1,1
4—_
64.128. 3,2, 1
P AN—
128, 256, 3,2, 1

Decoding

* Want:
* map rep’n (patterns of patterns of patterns...) to image

* Have:
* If rep’nis filter outputs, convolution is enough
* Rep’nis spatially smaller than image

* |dea:
* Filter+RelLU+upsample on occasion might do it

A decoder

a

x4Sx47]

Image

Image <«—

256xSxT
64x4SxAT 128x2Sx2T

RelLU Upsample by 2

l Data blocks
_ ry =
e - =
o > NG
B % W
3 - o
- < &

< f Layers

Input number of features, output number of features, kernel size, padding, stride

Patterns of patterns of
patterns

Big iIdea

* With the right choice of filters

* adecoder could reconstruct an image from an
encoders rep’n

* The rep’nis overcomplete
* “sees” the image at many scales
* so the pair should be able to denoise

* But what is the right choice of filters?

Choose filters/patterns that denoise

Things to think about...

17.1.

17.2.

17.3.

17.4.

17.5.

You are given a filtered image. How would you recover the original? what
might go wrong?

A multichannel convolution with stride 1, kernel size 2d + 1, padding d and
Ny filters accepts an N; X X XY block. How big is the block that comes out?
A multichannel convolution with stride 2, kernel size 2d + 1, padding d and N,
filters accepts an N; x 2X x 2Y block. How big is the block that comes out?
A multichannel convolution with stride 1, kernel size 2d+ 1, padding 0 and N,
filters accepts an N; X X X Y block. How big is the block that comes out?

A convolutional layer with stride 1 and kernel size 2d 4+ 1 is followed by a
second convolutional layer with stride 1 and kernel size 2d + 1. How big is the
receptive field for a feature in the second layer?

