Learning by Descent

D.A. Forsyth

University of lllinois at Urbana Champaign

Learning the filters

* Procedure:
* find many training pairs (noisy image, clean image)
* adjust filters so that

* Decode(Encode(noisy image)) is close to clean image
* On average, over pairs
* hope that this generalizes to new images

* Result:
* Denoising autoencoder
* Encoder has codes that represent images well
* Opens the door to a lot of procedures

Find many training pairs

* No noise — system might "cheat”
* Produce a representation that isn’t useful

* What noise should you use?
* Options:
e Gaussian (but a fairly simple filter will deal with this)
Poisson (median filter)
knock out blocks of pixels (more challenging, and helpful)
blurring (ditto)
* etc.

Adjusting the filters: notation

Write £(-;1)) for an encoder which accepts an image (in the - slot), produces an
encoding, and has parameters ¢ (the filter banks). Write D(-; ¢) for a decoder that
accepts an encoding (- slot again), produces an image, and has parameters ¢ (the
filter banks). Stack the 1) and ¢ into one vector . Write S for a set of N training
images. The 7’th image 1s Z;.

Adjusting the filters: loss

The autoencoder produces some image O(Z,0) = D(E(Z;1); ¢) when given
Z. Construct a cost function C(O(Z,#),Z;) that compares the output of the auto-
encoder to Z. This cost function is typically a weighted combination of the L2 norm
and the L1 norm (Section 9.2.2).

Now write .

Ls(0) = ~ ZC(O(Im 0).Z:)
iIeS

for the loss — an average over a set S of images of the cost per image. The problem
is to find a # that produce an acceptably small value of the loss. In an ideal world,
S would be all possible images, but this isn’t practical. Instead, train on some
large set of images (the training set). If this set is large enough and representative
enough, expect that the autoencoder will also have low loss on other images, a
property called generalization.

Adjusting the filters: optimization
problem, but weird

£5(6) =+ 3 C(O(T:.0).T)
1€ES

* |ssues:
* The cost function is very hard to evaluate (N is big)

* There are lots of parameters (millions-billions)
* S0 no newton’s method

* You don’t actually want an optimum
* you want a set of filters that works well on other images

Stochastic gradient descent

£5(6) =+ 3 C(O(T:.0).T)
1€ES

* Loss is a population mean
* you can estimate this quite well with a sample mean
* draw a small batch, average over that

Stochastic gradient descent

In the case of the loss function, choose a sample size B — usually called a batch size
— draw B, a set of B images Z; drawn uniformly and at random, and form

1
VoLls(f) = - Y " VC(Z;:0)

jEB
and use this as an estimate of
VoLs
to take a descent step. Write
VoLl

for this estimate. Choose a stepsize n, for the n’th step, and the descent method
becomes

Oni1 = 6 — '77nﬁ9£.

This is stochastic gradient descent or SGD. Calling 7, a stepsize is dubious (the
gradient isn’t a unit vector); an alternative is to call it the learning rate (which
isn’t much better because it isn’t a rate).

Stochastic gradient descent
Onst = Op, — 1y VoL.

* How big a step?
* Line search
* you can’t—Nistoo big
* Fixed length
* too big (doesn’t settle down)
* too small (no progress)
* Learning rate schedule

» start biggish, take steps, make smaller
* how bigis biggish? try

Image

Evaluating the gradient _

Output

1

Vol = 5 Y " VeC(0(9),1)).

jeB

= DBg+1
where

= Li(Bk; k)

. = Lg_1(Br—1;0k-1)

Recursion from chain rule
(Backpropagatlon)

up

Vo, C

T
Uy

Vo, ,C

u,

Vo,._,.C

V. C

VolT
Derivatives of layer outputs
with respect to parameters
u) Jr. B 9 .
uO ij B o Derivatives of layer outputs

with respect to inputs

T
uy ij—1;9k—1

T
ur—lek—r+1;Bk—r+1

ll'f'ij—r;ek—r

Ur—1J1,:6

Training loss

Stochastic gradient descent

Orsr = 0, — Nu Vol
* Choice of steplength matters
* more later

Training loss while leaming for various steplengths of SGD 0.0 Validation loss while leaming for various steplengths of SGD
— 1le-3 valid
17.5 — le-4 valid
le-5 valid
15.0
v 125
°
o
2 100
©
2
S 75
5.0
~——
e e
0 I T T T o.o 1 I T T
0 20000 40000 60000 80000 0 20000 40000 60000 80000

Number of images Number of images

Training loss

Stochastic gradient descent

Onit = Op, — 1y VL.
* Steplength scheduling can help

e more later

Training loss for simple steplength schedule, SGD Training loss for simple steplength schedule, SGD
3.0 T 3.0 -
| [” —_— le-3 —_— 2e-3
= 5e-4 —_— 2e-4
2.5 le-4 2.5 1 2e-5
- Reference
2.0 2.0
o
o
1.5 - 215
C
‘T
=
1.0 - 1.0
0.5 - 0.5 -
0.0 T T T T T 0.0 T T T T T
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000

Number of images Number of images

Things to think about...

17.6. Section 17.3.4 says: “ Write Jr, .g, for the derivative of the function L.,
with respect to parameters 6y, and J, .p for the derivative of the function
Ly, with respect to inputs By (recall these are matrices)”. Why are these
matrices? what are the elements of the matrices?

