

Learning by Descent

D.A. Forsyth

University of Illinois at Urbana Champaign

Learning the filters

- Procedure:
 - find many training pairs (noisy image, clean image)
 - adjust filters so that
 - $\text{Decode}(\text{Encode}(\text{noisy image}))$ is close to clean image
 - on average, over pairs
 - hope that this generalizes to new images
- Result:
 - Denoising autoencoder
 - Encoder has codes that represent images well
 - Opens the door to a lot of procedures

Find many training pairs

- No noise – system might "cheat"
 - Produce a representation that isn't useful
- What noise should you use?
 - Options:
 - Gaussian (but a fairly simple filter will deal with this)
 - Poisson (median filter)
 - knock out blocks of pixels (more challenging, and helpful)
 - blurring (ditto)
 - etc.

Adjusting the filters: notation

Write $\mathcal{E}(\cdot; \psi)$ for an encoder which accepts an image (in the \cdot slot), produces an encoding, and has parameters ψ (the filter banks). Write $\mathcal{D}(\cdot; \phi)$ for a decoder that accepts an encoding (\cdot slot again), produces an image, and has parameters ϕ (the filter banks). Stack the ψ and ϕ into one vector θ . Write \mathcal{S} for a set of N training images. The i 'th image is \mathcal{I}_i .

Adjusting the filters: loss

The autoencoder produces some image $\mathcal{O}(\mathcal{I}, \theta) = \mathcal{D}(\mathcal{E}(\mathcal{I}; \psi); \phi)$ when given \mathcal{I} . Construct a cost function $\mathcal{C}(\mathcal{O}(\mathcal{I}, \theta), \mathcal{I}_i)$ that compares the output of the autoencoder to \mathcal{I} . This cost function is typically a weighted combination of the L2 norm and the L1 norm (Section 9.2.2).

Now write

$$\mathcal{L}_{\mathcal{S}}(\theta) = \frac{1}{N} \sum_{i \in \mathcal{S}} \mathcal{C}(\mathcal{O}(\mathcal{I}_i, \theta), \mathcal{I}_i)$$

for the *loss* – an average over a set \mathcal{S} of images of the cost per image. The problem is to find a θ that produce an acceptably small value of the loss. In an ideal world, \mathcal{S} would be all possible images, but this isn't practical. Instead, train on some large set of images (the *training set*). If this set is large enough and representative enough, expect that the autoencoder will also have low loss on other images, a property called *generalization*.

Adjusting the filters: optimization problem, but weird

$$\mathcal{L}_{\mathcal{S}}(\theta) = \frac{1}{N} \sum_{i \in \mathcal{S}} \mathcal{C}(\mathcal{O}(\mathcal{I}_i, \theta), \mathcal{I}_i)$$

- Issues:
 - The cost function is very hard to evaluate (N is big)
 - There are lots of parameters (millions-billions)
 - so no newton's method
 - You don't actually want an optimum
 - you want a set of filters that **works well on other images**

Stochastic gradient descent

$$\mathcal{L}_{\mathcal{S}}(\theta) = \frac{1}{N} \sum_{i \in \mathcal{S}} \mathcal{C}(\mathcal{O}(\mathcal{I}_i, \theta), \mathcal{I}_i)$$

- Loss is a population mean
 - you can estimate this quite well with a sample mean
 - draw a small batch, average over that

Stochastic gradient descent

In the case of the loss function, choose a sample size B – usually called a *batch size* – draw \mathcal{B} , a set of B images \mathcal{I}_j drawn uniformly and at random, and form

$$\nabla_{\theta} \mathcal{L}_{\mathcal{B}}(\theta) = \frac{1}{B} \sum_{j \in \mathcal{B}} \nabla_{\theta} \mathcal{C}(\mathcal{I}_j; \theta)$$

and use this as an estimate of

$$\nabla_{\theta} \mathcal{L}_{\mathcal{S}}$$

to take a descent step. Write

$$\hat{\nabla}_{\theta} \mathcal{L}$$

for this estimate. Choose a stepsize η_n for the n 'th step, and the descent method becomes

$$\theta_{n+1} = \theta_n - \eta_n \hat{\nabla}_{\theta} \mathcal{L}.$$

This is *stochastic gradient descent* or *SGD*. Calling η_n a stepsize is dubious (the gradient isn't a unit vector); an alternative is to call it the *learning rate* (which isn't much better because it isn't a rate).

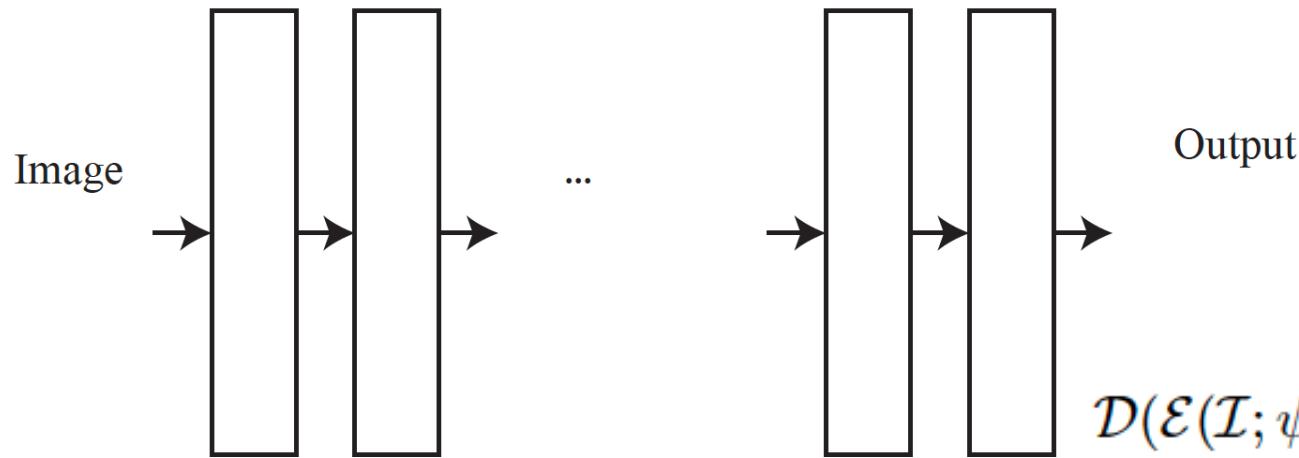
Stochastic gradient descent

$$\theta_{n+1} = \theta_n - \eta_n \hat{\nabla}_\theta \mathcal{L}.$$

- How big a step?
 - Line search
 - you can't – N is too big
 - Fixed length
 - too big (doesn't settle down)
 - too small (no progress)
 - Learning rate schedule
 - start biggish, take steps, make smaller
 - how big is biggish? try

Evaluating the gradient

$$\hat{\nabla}_{\theta} \mathcal{L} = \frac{1}{B} \sum_{j \in \mathcal{B}} \nabla_{\theta} \mathcal{C}(\mathcal{O}(\theta), \mathcal{I}_j).$$



Output

$$\mathcal{D}(\mathcal{E}(\mathcal{I}; \psi); \phi) = B_{k+1}$$

where

$$B_{k+1} = L_k(B_k; \theta_k)$$

$$B_k = L_{k-1}(B_{k-1}; \theta_{k-1})$$

...

$$B_1 = \mathcal{I}$$

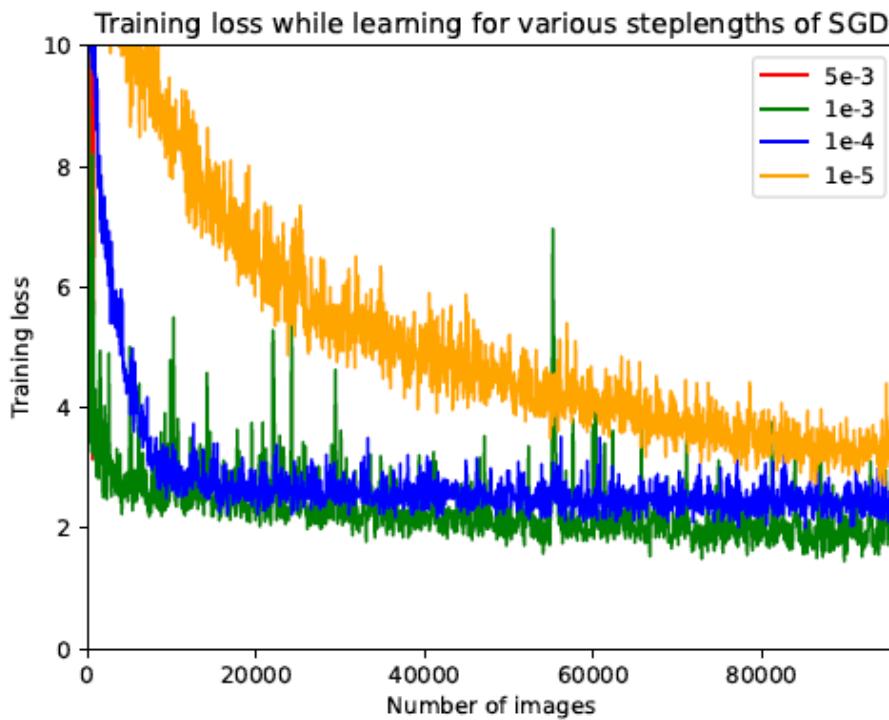
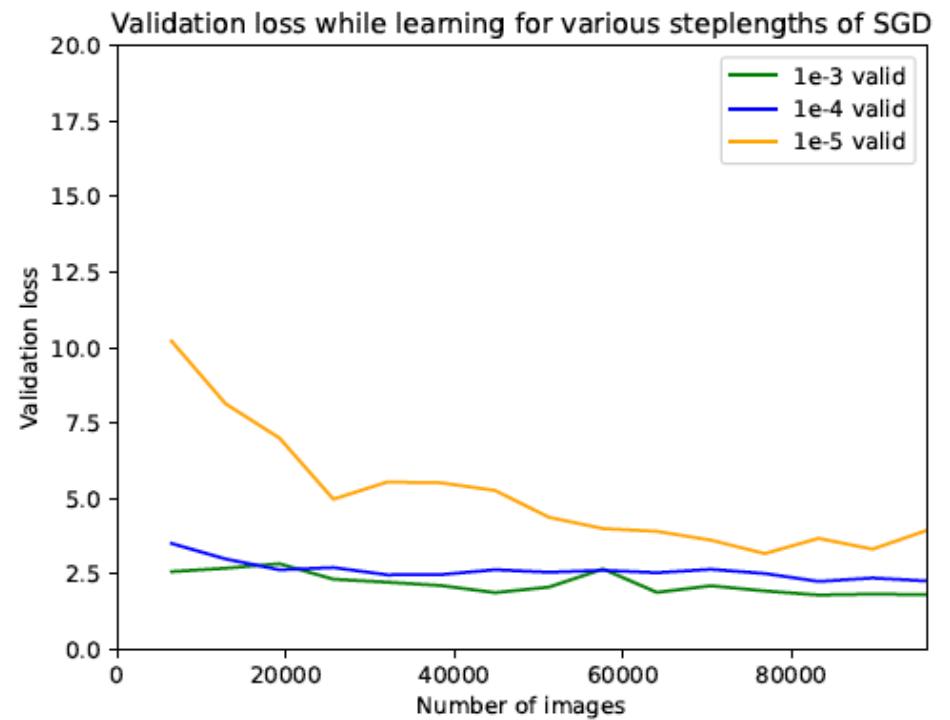
Recursion from chain rule (Backpropagation)

$$\begin{aligned}\mathbf{u}_0^T &= \nabla_{\mathcal{O}} \mathcal{C}^T && \text{Derivatives of layer outputs with respect to parameters} \\ \nabla_{\theta_k} \mathcal{C} &= \mathbf{u}_0^T \mathcal{J}_{L_k; \theta_k} && \text{Derivatives of layer outputs with respect to inputs} \\ \mathbf{u}_1^T &= \mathbf{u}_0^T \mathcal{J}_{L_k; B_k} && \text{Derivatives of layer outputs with respect to inputs} \\ \nabla_{\theta_{k-1}} \mathcal{C} &= \mathbf{u}_1^T \mathcal{J}_{L_{k-1}; \theta_{k-1}} \\ &\dots \\ \mathbf{u}_r &= \mathbf{u}_{r-1}^T \mathcal{J}_{L_{k-r+1}; B_{k-r+1}} \\ \nabla_{\theta_{k-r}} \mathcal{C} &= \mathbf{u}_r \mathcal{J}_{L_{k-r}; \theta_{k-r}} \\ &\dots \\ \nabla_{\theta_1} \mathcal{C} &= \mathbf{u}_{k-1} \mathcal{J}_{L_1; \theta_1}\end{aligned}$$

Stochastic gradient descent

$$\theta_{n+1} = \theta_n - \eta_n \hat{\nabla}_{\theta} \mathcal{L}.$$

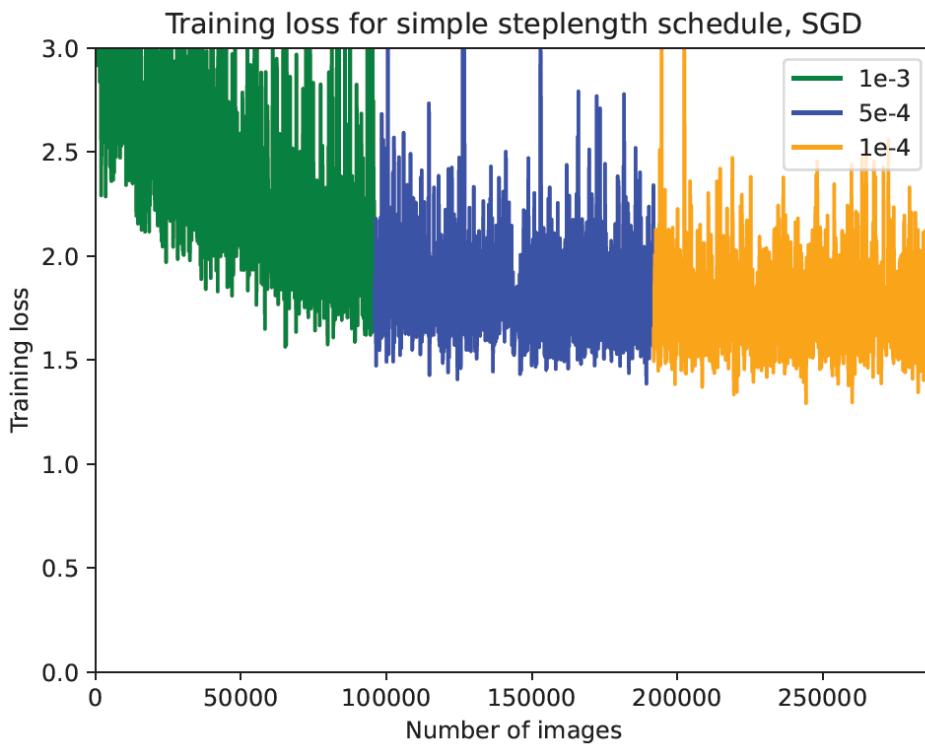
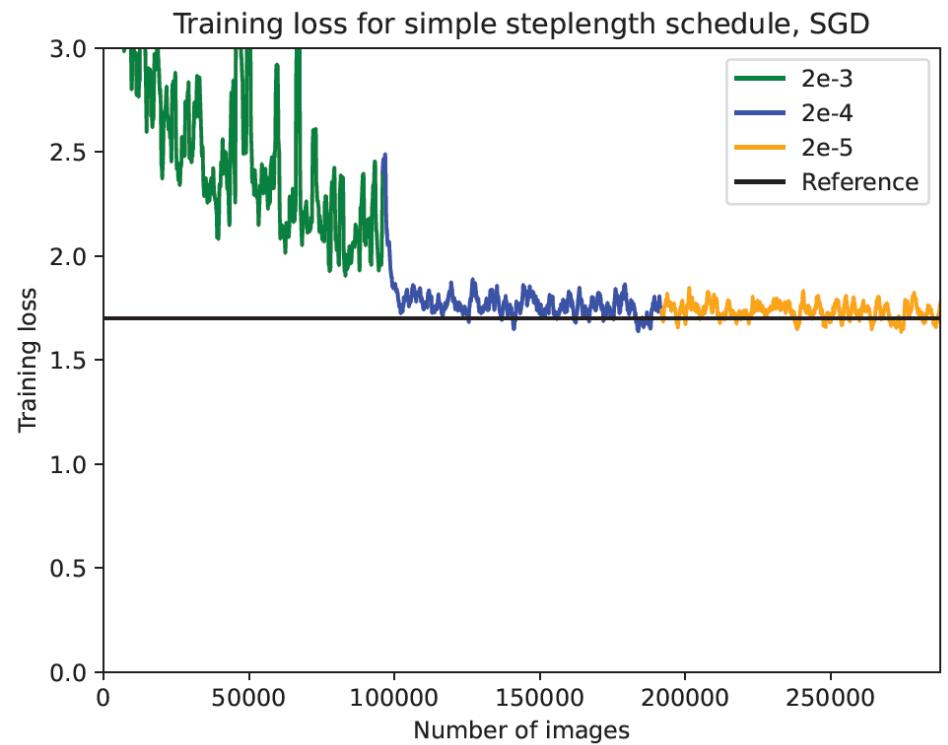
- Choice of steplength matters
 - more later



Stochastic gradient descent

$$\theta_{n+1} = \theta_n - \eta_n \hat{\nabla}_{\theta} \mathcal{L}.$$

- Steplength scheduling can help
 - more later



Things to think about...

17.6. Section 17.3.4 says: “Write $\mathcal{J}_{L_w; \theta_w}$ for the derivative of the function L_w with respect to parameters θ_w , and $\mathcal{J}_{L_w; B_w}$ for the derivative of the function L_w with respect to inputs B_w (recall these are matrices)”. Why are these matrices? what are the elements of the matrices?