Losses and
generalization

D.A. Forsyth

University of lllinois at Urbana Champaign

Losses —the L2 loss

Loss functions typically evaluate residuals — the difference between what the system
provides and ground truth. The SSD loss compares a reconstructed training image
R to the ground truth G by

Cr2(R,G) = ZAU,

where A;; = R;; — G;; is the residual. This is the square of the L2 norm of A, and
is sometimes (rather disreputably) referred to as an L2 loss. This might seem a

L2 loss creates blur

>

Intensity

Position
Input Output

* Sharp edge in the wrong place (red) is expensive
* Compared to blurry edge in about the right place (blue)

L1 loss

the gradient to have zeros, assuming the optimization process can cope. Using an
L1 term. written

CLle Z|A13|

will tend to encourage the residual to have zeros in it, and will tend to discourage
blurring (Figure ?7).

* |dea:
* penalize absolute value of residual

* We saw the L1 norm in denoising

* Square of a small number is very small; absolute
value of small number isn’t

* Tends to discourage blurring

L1 loss

Input L2 Output L1 Output
Posfry. ‘ -1

Losses and Gradients

 Notice that L1 loss, L2 loss DON’T:

* Force values to be non-negative
* Force valuesto be lessthan 1

- (VERY BAD) Idea:

Here is an example of a bad loss. The indicator function is a function that
tests its argument against a condition, then reports 1 if the condition is true and
zero otherwise. For example,

1 1 ifx<O

z<0)(7) = 0 otherwise

is 1 when z < 0 and 0 otherwise. Note some redundancy here; the condition usually
means it is obvious what the argument is, so it is quite usual to write I, .o rather
than Ij,.o(x). The following (BAD) choice of loss could be intended to force an
output to be non-negative:

Chaq(Z) = ZH[IU <0]

j

Losses and Gradients

* Bad, because it supplies no gradient
* Pixelis +ve: loss and gradient are zero

* Pixelis-ve: lossis 1, gradient is zero — no information
about how to change filters

* CF L1 loss:

* Pixel value too large: gradient pushes it down
* Pixel value too small: gradient pushes it up

* Pixel value justright: non-differentiability doesn’t
matter

* never happens
* choose -1<=gradient <=1: everything works fine

General ideas: Cheating

* SGD is a very effective search
* Astonishing, but true

* [t might find a solution you don’t expect and don’t
want

* Example:

* train an autoencoder with (clean, clean) pairs
* it will cheat, and pass on pixels
* even if it has a complicated architecture
* symptoms:
* can’tdenoise
* meaningless image representation

General ideas: Cheating

* Cheating example above won’t denoise

* [tis important to train representation to denoise
Images

* (Noisy, clean) pairs will produce something
useful

* (clean, clean) pairs won’t!

General ideas: Generalization

* No interest in denoising training images
* We want to denoise new images

* Options:
* Data augmentation: make training dataset look bigger

* Regularization: make it hard to choose filters that are
specialized

General ideas: Data Augmentation

* Applies to many learned systems

* For now:
* Aleft/right flipped image is still an image
* An up/down flipped image is still an image
* Animage crop is still an image
* Etc

* When forming a batch, randomly
* crop, flip, etc. images

General ideas: Regularization

* Prefer small coefficients to large coeffs.

* Afilter with large coeffs that works well on training data
might produce an unexpected large response on new data

* Discourage filters with large coeffs by penalizing loss
* (cost of error on batch) + scale*(penalty for large coeffs)

* Known as weight decay
* APl will do this for you if you ask

General ideas: Regularization

e How to choose scale?

* Train for many different choices

* Evaluate each on held out data to choose
* Now re-train using the best value

* Evaluate the result on new dataset

General ideas: dropout

Another regularization strategy is dropout, where one randomly replaces el-
ements of a data block with zeros during training. This is intended to advantage
filters that are robust to error. Dropout will tend to disadvantage a filter that
relies too strongly on one input, because that input might be dropped out. Some
housekeeping is required to implement dropout properly, because the filter sees a
“smaller” input in training (where some inputs might be zeroed) than in test. A
good API will have a dropout implementation that takes care of this, and I leave
the topic to the manual of your API. Further strategies involve discouraging large
values in data blocks (normalization) and are dealt with in Section 18.2.3.

* This is a form of regularization

Things to think about...

17.7. You want to ensure that an autoencoder produces a non-negative number at

17.8.

every location. Section 17.4.2 says that

1
2Ty T

ij
would be a bad choice of loss for a > 0 and large. What happens if a > 0 and
small? what happens if a < 0?
Section 17.4.1 says: “Recall from Section 7.2.4 that using an L1 norm as a
penalty for the gradient tends to cause the gradient to have zeros, assuming
the optimization process can cope exercises .” Explain; do you expect
gradient descent on an L1 loss produce zeros?

