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General frameworks

* Register two sets of points

* where correspondence is known exactly
* eg barcode, etc. reference points

* where correspondence is estimated, but quite well
* egtwo images, interest points

* where correspondence might be hard to estimate
* butregistration is possible
* egtwo lidarimages of about the same stuff



Setup for affine tx

For an affine transformation, 7 (y) is My +t. Further, there is a transformation 7
so that 7T (y;) is close to x; for each i. Write r; for the vector from the transformed

yi to X;, so

ri(M,t) = (x; — (My; +t))

and

Cu(M,t) = (1/N) ) _xii

should be small. Because it will be useful later, assume that there is a weight w;
for each pair and work with

C(M,t) = Z wz-r;rri

)

where w; = 1/N if points all have the same weight. The gradient of this cost with



Translation term

where w; = 1/N if points all have the same weight. The gradient of this cost with
respect to t is

—2 Z Wi (X@' — M}’z — t)
i
which vanishes at the solution, so that

Z wiX; — M Z Wiyi
i
£ > i Wi ‘

Now if > . wix; = ), wiMy; = M(D_, w;yi), then t = 0. An easy way to
achieve t = 0 is to ensure ), w;x; = 0 and ), w;y; = 0. Write

_ Z,L W;X;
Zz’ Wi

for the center of gravity of the observations (etc.) Now form

Cx

u; =X; —Cgz and v; = y; — Cy

and 1f you use U and )V, then the translation will be zero and must only estimate
M. Further, the estimate M of this matrix yields that the translation from the
original reference points to the original observations is ¢, — Mc,,.



Finding M (compact form)

Finding M now reduces to minimizing

Z w; (w; — Mv;)" (w; — Mv;)

as a function of M. The natural procedure — take a derivative and set to zero, and
obtain a linear system (exercises ) — works fine, but it is helpful to apply some
compact and decorative notation.



Finding M (long form)

Write W = diag ([w1,...,wn]), U = [uf,...,up| (and so on). Recall all
vectors are column vectors, so U is N x d. You should check that the objective can
be rewritten as

TrWU = VMY WU - v )T,
exercises Now the trace is linear; YT WU is constant;
Tr(A)=Tr (AT);

and

Tr (ABC) = Tr (BCA) = Tr (CAB)

(check this by writing it out, and remember it; it’s occasionally quite useful). This



Finding M (long form)

(check this by writing it out, and remember it; it’s occasionally quite useful). This
means the cost is equivalent to

Tr (2" WYM?™) + Tr (MY WY MT)
which will be minimized when
MVITWY = utwy

(which you should check exercises ). The exercises establish cases where VT WPT
will have full rank, and in these — the usual — cases M is easily obtained exercises
. Notice this derivation works whatever the dimension of the points.



Euclidean motion

* Most interesting in 2D or 3D
* The matrix is a rotation matrix

* You can do this in closed form (not widely
known)

As in the previous section, subtract the centers of gravity to get the transla-
tion, and work with u; and v;. The problem is now to choose R to minimize

Z wi(w; — Rv;)" (u; — Rvy).

()



Euclidean motion

Z w;(u; — Rv;) T (u; — Rv;) TrWU - VR (U - VR)T)

= Tr(—2V'WUR) + K

(because R R = T) \

Terms not involving R, so of no interest



Euclidean motion

Tr (—2V' WUR)

Here K is a constant that doesn’t involve R and so is of no interest. Now compute
an SVD of VWU to obtain VI WU = AYXB! where A, B are orthonormal, and
S is diagonal (Section 15.10 if you're not sure). Now B! RA is orthonormal, and
we must maximize Tr (B' RAS), meaning B’ RA = T (check this if you're not
certain), and so R = BAT.



Euclidean est. well behaved under

noise
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Green triangles —target pts
lying on gray rectangle

Red dots — source

(target points
transformed, then noise
added)

Purple triangles — apply
estimated transformation to
red points

Gray rectangle —
transformation applied to
true rectangle underlying red
points

Notice:

transformation is
about right, not massively
disrupted by noise



Euclidean est. well behaved under
noise

* Greentriangles —target pts
lying on gray rectangle

03 * Red dots - source
° . (target points
transformed, then noise
o added)
oo o

green->red o o * Purple triangles —apply
true: angle=1.2, tx=0, ty=3 ° o® estimated transformation to
est: angle= 1.25, tx=0.13, ty=3.07 ° o red points

* Grayrectangle-
transformation applied to

o true rectangle underlying red
points
[
¢ « Notice:
. transformation is

about right, only somewhat
disrupted by noise




Projective transformations

e In2D

mi11Yy1 + mi2y2 + M3

m31Y1 + M32Y2 T M33

m21Y1 + Mo2y2 + Mag

m31yY1 + M32Yy + M3z .



Homographies == Projective tx

* The mapping from a pattern on a planein 3D to a
pattern in an image is a projective transformation

* This means you can rectify by registration
* eg see what you know to be a square in image
* use vertices to register
* recover pattern
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A. Criminisi et al. Bringing Pictorial Space to Life: computer techniques for the analysis of paintings,
Proc. Computers and the History of Art, 2002



http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Homographies == Projective tx

X, Y, Z)=suttvtw

(£X/Z, £Y/Z, )




Homographies == Projective tx

X, Y, Z)y=s utt vt w

;/l (EX/Z, 1Y/Z, )
X

The coordinate system on the plane is (s,#)7, and the points on the plane in
3D are parametrized by su + tv + w, where u, v and w are vectors in 3D and u,
v are not parallel. Recall from Section 7?7 the geometric model that the pinhole
camera maps the point (X,Y, Z)T in 3D to the point (fX/Z, fY/Z)T on the image
plane. In turn, the point (s,#)” on the plane maps to

sugz+tvg+ws
f Suot+tvot+wo
sug+tvg+ws

f suq+tvy twy ]



Minimizing the residual

The residual error between x; and M(y;) is
ri =X; — M(y,,)

A weighted least squares solution now solves
Z w,;r;-r r;.
i

The main issue here is that M(y;) is not a linear function of the components of
M. Numerical minimization is required. You should use a second order method
(Levenberg-Marquardt is favored exercises ). Experience teaches that this op-
timization is not well behaved without a strong start point.



Getting a start point

- M11Y1 + Mig2y2 + M3
Iy ms1y1 + ms32y2 + mass
T2 mM21Y1 + M22Y2 + M3

L Mm31Y1 + M32Yy + mMm33

There is an easy construction for a good start point. For a pair of known points
X; and y;, you can cross multiply the equations for the projective transformation
to get

(mllyl,i T ... T MadYd,i T+ m1(d+1)) -
0 Iy (m(d+1)1y1,¢ + ...+ m(d—{—l)dyd,i + m(d+1)(d+1))

(mdlyl,i T ... T MGqYdi + md(d+1)) —
Ld,i (m(d+1)1y1,z‘ T T Myd41)dYd,i T m(d+1)(d+1))




Getting a start point

Here the m;; are unknown, so this is a set of d homogenous linear equations in
(d+1) x (d+ 1) unknowns. I have arranged these unknowns into a vector and the
coefficients into a matrix D for convenience. If you have (d + 2) different (x,y)
pairs that meet conditions exercises , you can solve the system up to scale. But
the scale of the solution does not affect the transformation it implements, so you
have a start point.

If you have more than (d + 2) pairs, you can use least squares. Because
the equations are homogenous, you must constrain the scale of m, so minimize
m? DT Dm subject to m m = 1. exercises The resulting estimate of M has
a good reputation as a start point for a full optimization. It is straightforward
to Incorporate weights on the points into this estimate. If the weights come from
IRLS, then you need this construction only at the start. For every other iteration,
the previous iteration will supply an acceptable start point as well as weights.



Things to think about...

15.6. Section 15.3.1 says: “ Finding M now reduces to minimizing

Z wi (ug — Mvi)T (us — Mvy)

as a function of M. The natural procedure — take a derivative and set to zero,
and obtain a linear system — works fine” What is the linear system you would
solve to find M7
15.7. Check that
Tr (ABC) = Tr (BCA) = Tr (CAB)

for 1 x 1 matrices; now check this for 2 X 2 matrices by writing the whole thing
out.

15.8. You have a dataset of N points y;. Write the center of gravity for these points
as c. Check the center of gravity of the points My; +t i1s Mc + t.

15.9. Section 15.4.2 has: “you can apply translations and scales as appropriate to es-
timate the transformation between the original coordinate systems.” Explain.



