

Robust registration with IRLS and RANSAC

D.A. Forsyth

University of Illinois at Urbana Champaign

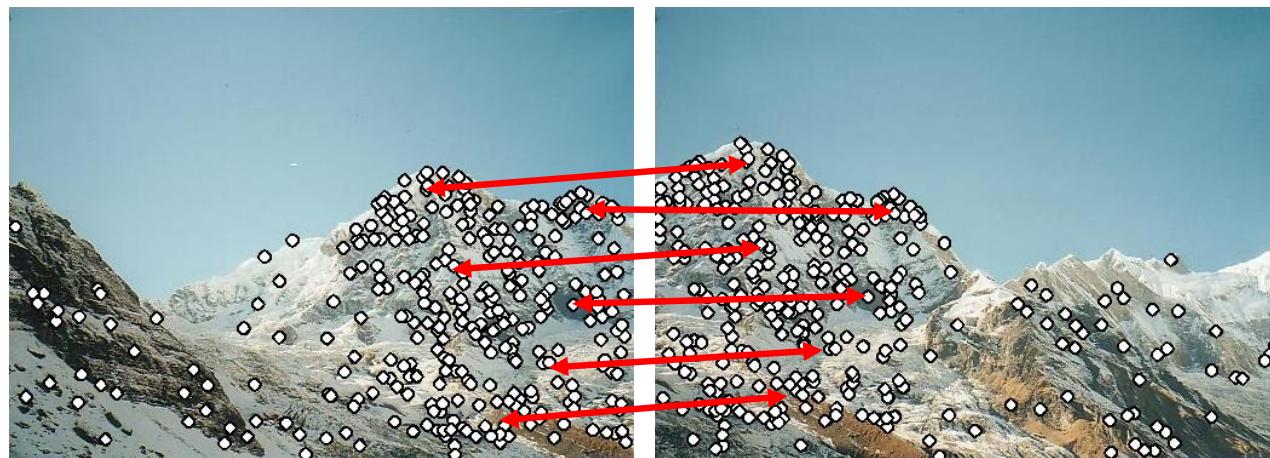
General frameworks

- Register two sets of points
 - where correspondence is known exactly
 - eg barcode, etc. reference points
 - where correspondence is estimated, but quite well
 - eg two images, interest points
 - where correspondence might be hard to estimate
 - but registration is possible
 - eg two lidar images of about the same stuff

Application: image mosaics

- Find interest points in image A and image B
- Build correspondences:
 - For each a in A find best matching b in B using descriptor
 - For each b in B find best matching a in A using descriptor
 - For consistent pairs, if descriptors are sufficiently similar
 - declare correspondence
- Notice: you should get many correspondences BUT some are wrong

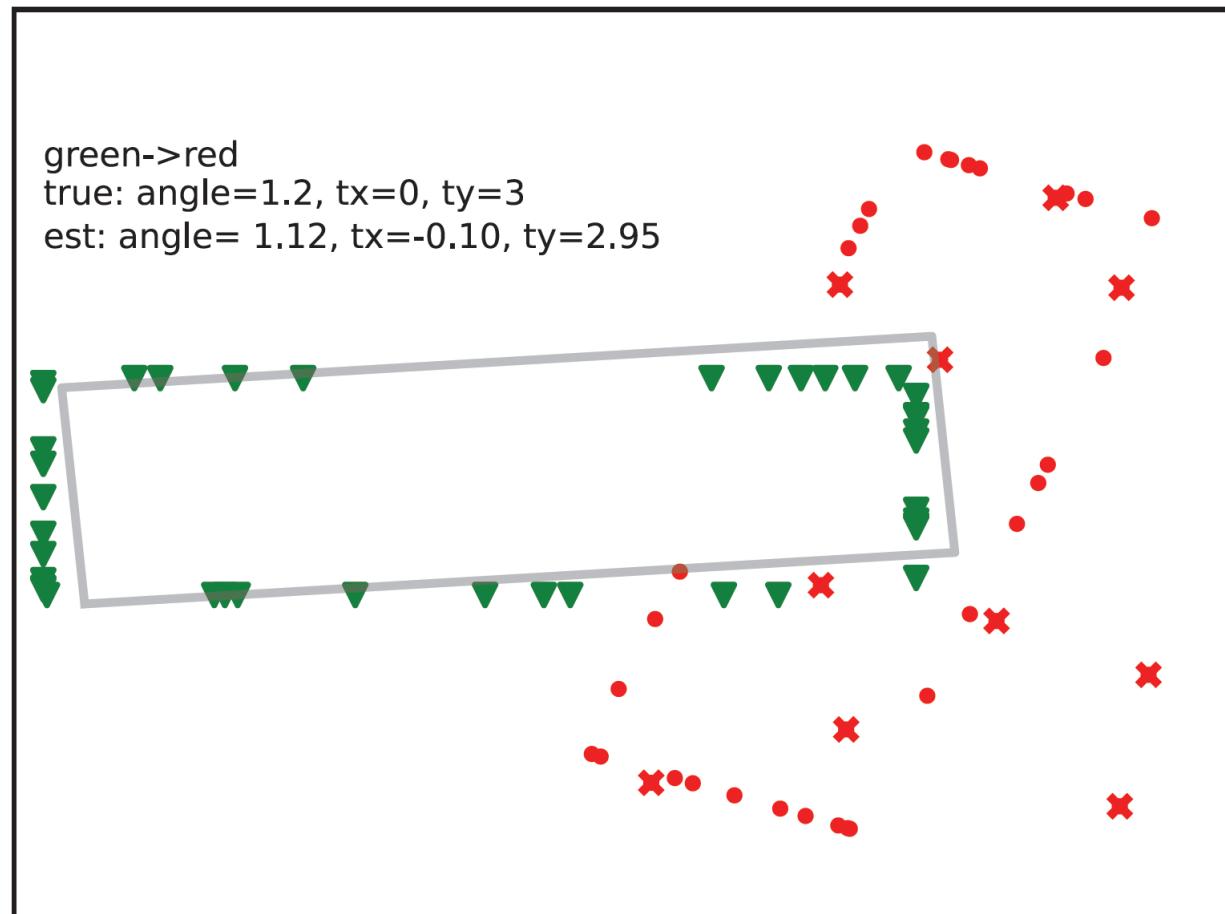
Recall...



General remarks

- Very like line fitting and line fitting recipes apply
- The objects we are working with are now corresponding pairs
 - (point in A, point in B)
- Outliers are usually correspondences that are wrong
 - there could be lots

Outliers affect least squares



- Green triangles – target pts lying on gray rectangle
- Red dots – source
- (target points transformed, then noise added)
- Red x – outliers on source
- Gray rectangle – transformation applied to true rectangle underlying red points
- Notice:
- transformation is disrupted by outliers

IRLS

- Start with initial transformation
 - get weights, scale from transformation
- Iterate:
 - estimate transformation using weights, scale
 - estimate scale using transformation
 - estimate weights using scale, transformation
- We **know** that one stationary point is the true minimum
- No other guarantees I'm aware of, but quite well behaved

IRLS applies

The IRLS recipe can be applied with very little modification to registration. Choose a robust cost function from Section 13.2.1 or elsewhere. Recall this cost applies to the residual. Write θ for the parameters of the transformation \mathcal{T}_θ , and the residual is now

$$r(\mathbf{x}_i, \mathbf{y}_i, \theta) = \sqrt{(\mathbf{x}_i - \mathcal{T}_\theta(\mathbf{y}_i))^T (\mathbf{x}_i - \mathcal{T}_\theta(\mathbf{y}_i))}.$$

The square root ensures that minimizing the least squares criterion is equivalent to

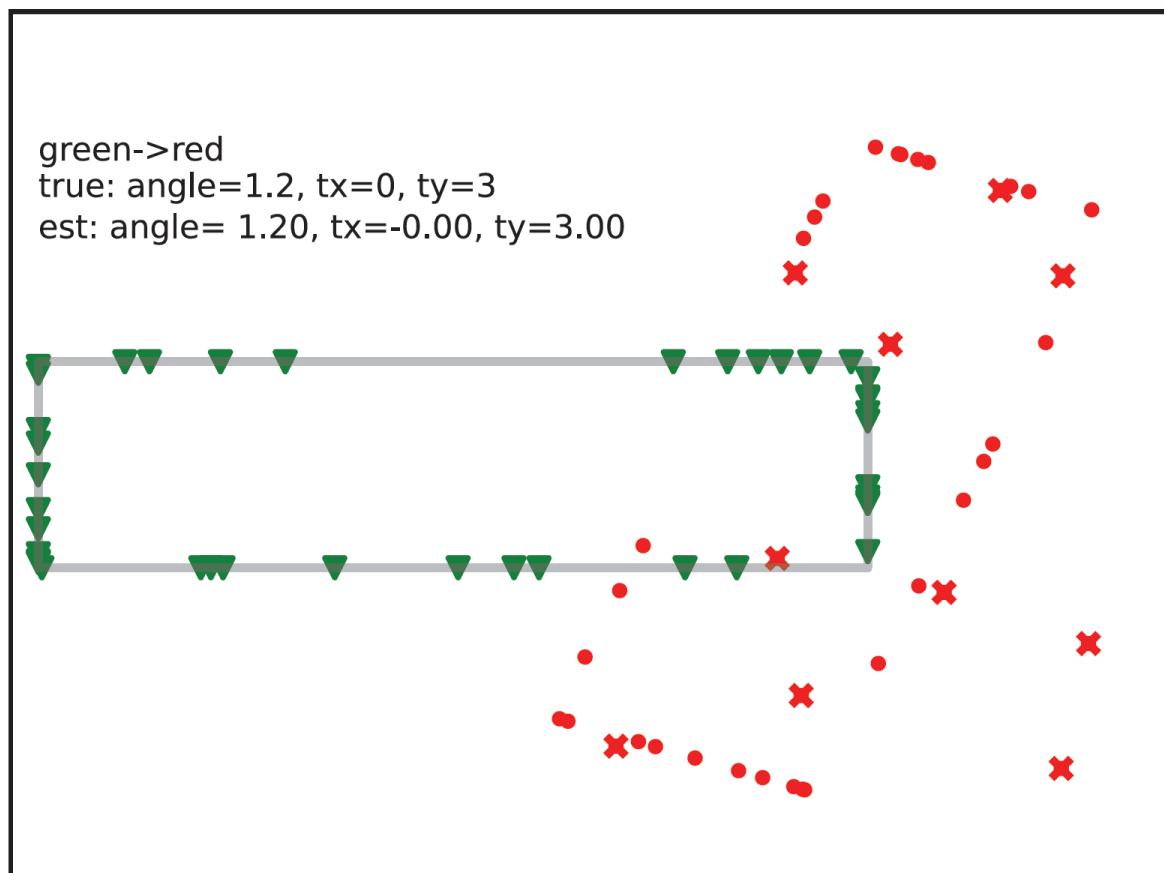
$$(1/2) \sum_i (r(\mathbf{x}_i, \mathbf{y}_i, \theta))^2.$$

For any given θ , the weights are now

$$w_i = \left(\frac{\frac{\partial \rho}{\partial u}}{r(\mathbf{x}_i, \mathbf{y}_i, \theta)} \right).$$

IRLS handles few outliers

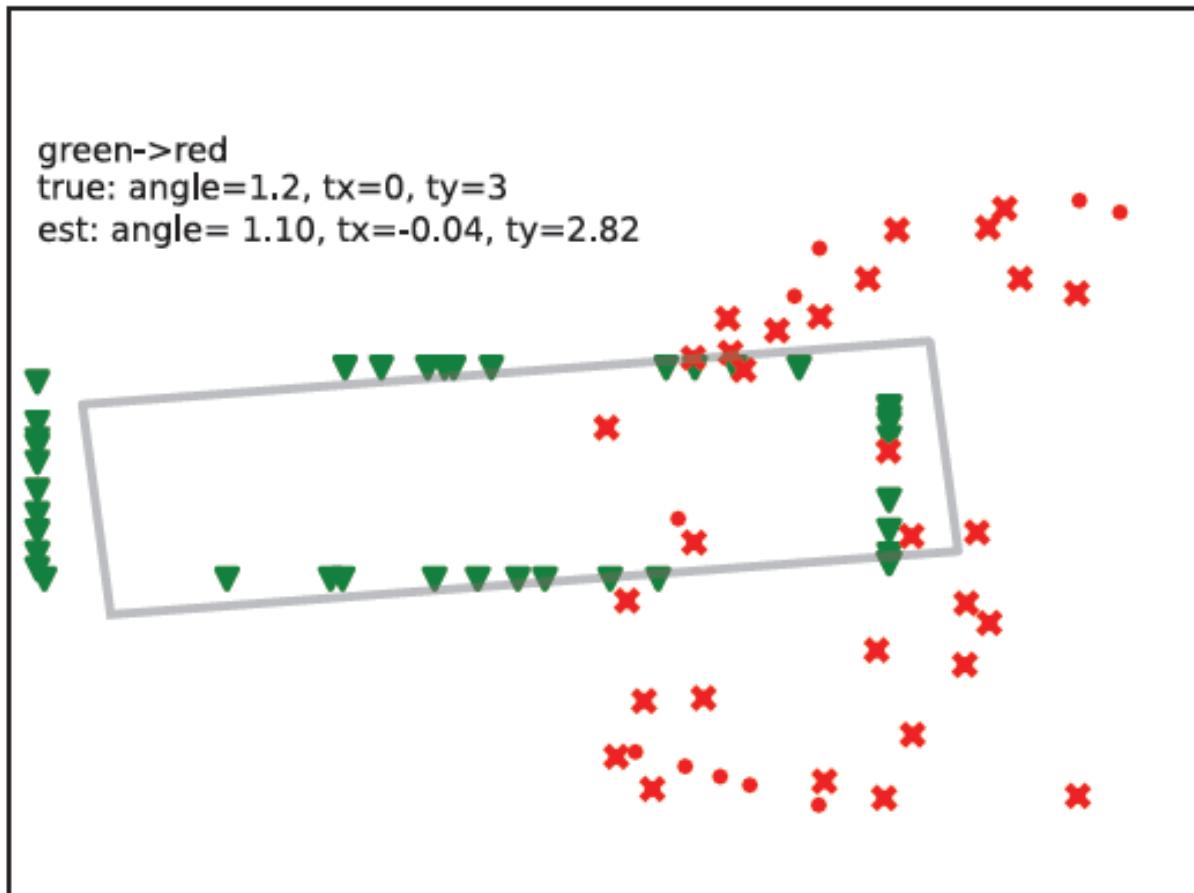
IRLS, 5 outliers



- Green triangles – target pts lying on gray rectangle
- Red dots – source (target points transformed, then noise added)
- Red x – outliers on source
- Gray rectangle – transformation applied to true rectangle underlying red points
- Notice: transformation is NOT disrupted by outliers

IRLS can't do many outliers

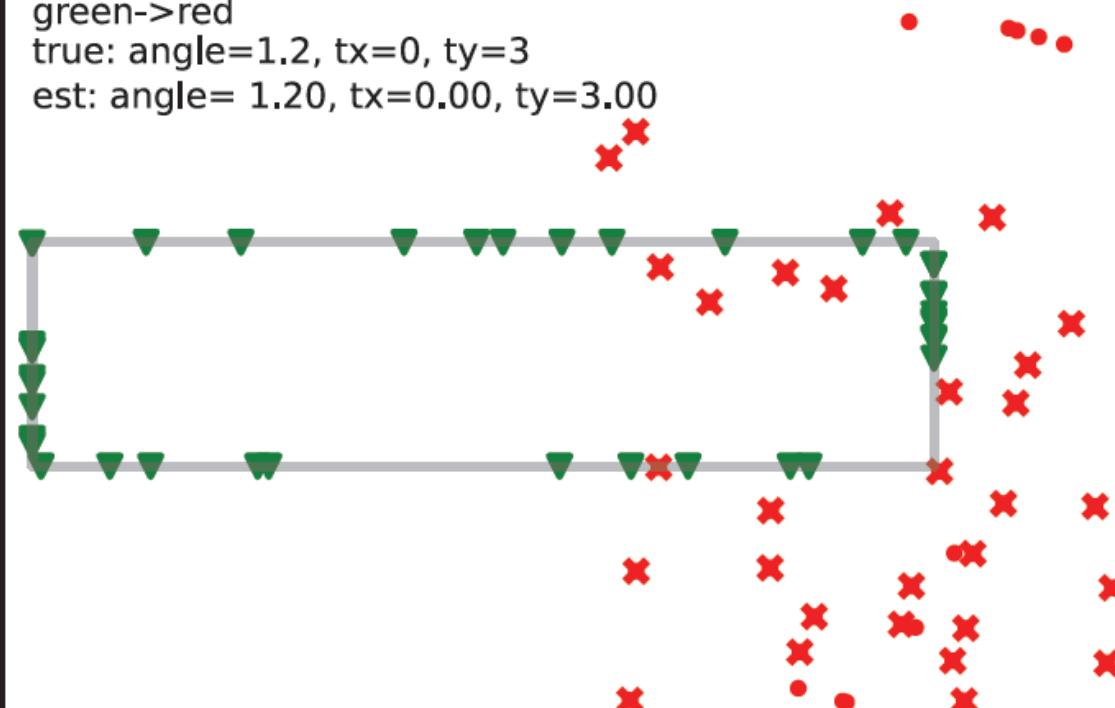
IRLS, 30 outliers



- Green triangles – target pts lying on gray rectangle
- Red dots – source
 - (target points transformed, then noise added)
- Red x – outliers on source
- Gray rectangle – transformation applied to true rectangle underlying red points
- Notice:
 - transformation IS disrupted by outliers

RANSAC to the rescue

green->red
true: angle=1.2, tx=0, ty=3
est: angle= 1.20, tx=0.00, ty=3.00



- Green triangles – target pts lying on gray rectangle
- Red dots – source
- Red x – outliers on source
- Gray rectangle – transformation applied to true rectangle underlying red points
- Notice:
 - transformation IS disrupted by outliers

RANSAC

- Affine transformation:
 - $d+1$ correspondences in d dim
- Projective transformation:
 - $d+2$ correspondences in d dim
- Euclidean:
 - use 2 for plane (2D)
 - use 3 for 3D
- BUT some such are obvious outliers
- Key Issue: there can be a lot of outliers

Think about this...

- 16.1. In the lead, I say: “Correspondences that are wrong tend to be badly wrong”. Why is this the case?
- 16.2. Check that I have correctly mapped IRLS (Section 14.2.2) onto registration in Section 16.1.
- 16.3. Check that I have correctly mapped RANSAC (Section 14.3) onto registration in Section 16.1.2.
- 16.4. Show how an affine transformation in d dimensions is exactly specified by $d+1$ correspondences (start with $d = 1$).
- 16.5. Produce a set of two correspondences that can't be exactly registered with a Euclidean transformation in 2D.
- 16.6. Produce a set of three correspondences that can be exactly registered with a Euclidean transformation in 2D.
- 16.7. Show that $d+2$ correspondences are enough to exactly specify a projective transformation in d dimensions.
- 16.8. Section 16.2 has: “This means that *in the best case* you will need to look at $\frac{1}{[\max(M, N)]^3}$ of the order of

$$\frac{1}{[\max(M, N)]^3}$$

samples to see one set of three good samples.” Explain.