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Patterns, Smoothing and Filters

TODO: convolution vs filtering TODO: associative TODO: linear TODO:
shift invariant - equivariance TODO: useful non-linear filters TODO: padding
TODO: stride

Pictures of zebras and of dalmatians have black and white pixels, and in about the
same number, too. The difference between the two – stripes vs. spots – are obvious
when you look at small groups of pixels. Pixels tend to look like their neighbors, so
when a pixel disagrees with its neighbors, it might have been affected by noise. So
looking at small groups of pixels is a simple and effective way to suppress noise, too.
In this chapter, we introduce methods for obtaining descriptions of the appearance
of a small group of pixels. The key process here is forming weighted sums of pixel
values using different patterns of weights. to find different image patterns.

3.1 LINEAR FILTERS AND CONVOLUTION

3.1.1 Pattern Detection by Convolution

For the moment, think of an image as a two dimensional array of intensities. Write
Iij for the pixel at position i, j. We will construct a small array (a mask or kernel)
W, and compute a new image N from the image and the mask, using the rule

Nij =
∑
uv

Ii−u,j−vWuv

which we will write
N = W ∗ I.

In some sources, you might see W∗∗I (to emphasize the fact that the image is 2D).
We sum over all u and v that apply to W; for the moment, do not worry about
what happens when an index goes out of the range of I. This operation is known
as convolution, and W is often called the kernel of the convolution. You should
look closely at the expression; the “direction” of the dummy variable u (resp. v)
has been reversed compared with what you might expect (unless you have a signal
processing background). What you might expect – sometimes called correlation or
filtering – would compute

Nij =
∑
uv

Ii+u,j+vWuv

which we will write
N = filter(I,W).

This difference isn’t particularly significant, but if you forget that it is there, you
compute the wrong answer.

We carefully avoid inserting the range of the sum; in effect, we assume that
the sum is over a large enough range of u and v that all nonzero values are taken
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FIGURE 3.1: To compute the value of N at some location, you shift a copy of M
(the flipped version of W) to lie over that location in I; you multiply together the
non-zero elements of M and I that lie on top of one another; and you sum the
results.

into account. Furthermore, we assume that any values that haven’t been specified
are zero; this means that we can model the kernel as a small block of nonzero values
in a sea of zeros. We use this common convention regularly in what follows.

This operation is linear. You should check that:

� if I is zero, then W ∗ I is zero;

� (kW) ∗ I) = k(W ∗ I) = W ∗ (kI);

� (W) ∗ I) = k(W ∗ I) = W ∗ (kI);

� (W + V) ∗ I) = W ∗ I + V ∗ I;

� W ∗ (I + J ) = W ∗ I +W ∗ J ;

� W ∗ (V ∗ I) = (W ∗ V) ∗ I (so convolution is associative).

3.1.2 Convolution as Pattern Detection

You should think of the value of Nij as a dot-product. To see this, flip W in both
directions to form M. Then

Nij =
∑
uv

Ii−u,j−vWuv

=
∑
uv

Ii+u,j+vMuv
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FIGURE 3.2: On the far left, some images from the MNIST dataset. Three kernels
appear on the center left; the small blocks show the kernels scaled to the size of
the image, so you can see the size of the piece of image the kernel is applied to. The
larger blocks show the kernels (mid-grey is zero; light is positive; dark is negative).
The kernel in the top row responds most strongly to a dark bar above a light bar;
that in the middle row responds most strongly to a dark bar to the left of a light
bar; and the bottom kernel responds most strongly to a spot. Center shows the
results of applying these kernels to the images. You will need to look closely to see
the difference between a medium response and a strong response. Center right
shows pixels where the response exceeds a threshold. You should notice that this
gives (from top to bottom): a horizontal bar detector; a vertical bar detector; and
a line ending detector. These detectors are moderately effective, but not perfect.
Far right shows detector responses (in black) superimposed on the original image
(grey) so you can see the alignment between detections and the image.

equivalently

N = I ∗W
= filter(I,M)

This means that you can think about convolution like this. To compute the
value of N at some location, you place M (the flipped version of W) at some
location in the image; you multiply together the elements of I and M that lie on
top of one another, ignoring everything in I outside M; then you sum the results
(Figure 3.1).

In turn, you can think about convolution as forming a dot product between
M and the piece of image that lies under M (reindex the two windows to be
vectors). This view explains why a convolution is interesting: it is a very simple
pattern detector. Assume that u and v are unit vectors. Then u ·v is largest when
u = v, and smallest when u = −v. Using the dot-product analogy, for Nij to have
a large and positive value, the piece of image that lies under M must “look like”
M. Figure 3.2 give some examples.
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FIGURE 3.3: The top row shows estimates of derivatives obtained by finite differ-
ences. The image at the left shows a detail from a picture of a zebra. The center
image shows the partial derivative in the y-direction—which responds strongly to
horizontal stripes and weakly to vertical stripes—and the right image shows the
partial derivative in the x-direction—which responds strongly to vertical stripes and
weakly to horizontal stripes. However, finite differences respond strongly to noise.
The image at center left shows a detail from a picture of a zebra; the next image
in the row is obtained by adding a random number with zero mean and normal dis-
tribution (σ = 0.03; the darkest value in the image is 0, and the lightest 1) to each
pixel; and the third image is obtained by adding a random number with zero mean
and normal distribution (σ = 0.09) to each pixel. The bottom row shows the
partial derivative in the x-direction of the image at the head of the row. Notice how
strongly the differentiation process emphasizes image noise; the derivative figures
look increasingly grainy. In the derivative figures, a mid-gray level is a zero value,
a dark gray level is a negative value, and a light gray level is a positive value.

3.1.3 Convolution to Estimate Derivatives

Image derivatives can be approximated using another example of a convolution
process. Because

∂f

∂x
= lim

ϵ→0

f(x+ ϵ, y)− f(x, y)

ϵ
,

we might estimate a partial derivative as a symmetric finite difference:

∂h

∂x
≈ hi+1,j − hi−1,j .
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This is the same as a convolution, where the convolution kernel is

H =

 0 0 0
1 0 −1
0 0 0

 .

Notice that this kernel could be interpreted as a template: it gives a large positive
response to an image configuration that is positive on one side and negative on the
other, and a large negative response to the mirror image.

As Figure 3.3 illustrates, finite differences give a most unsatisfactory estimate
of the derivative. This is because finite differences respond strongly (i.e., have an
output with large magnitude) at fast changes, and fast changes are characteristic
of noise. Roughly, this is because image pixels tend to look like one another. For
example, if we used a camera with some pixels that were stuck at either black or
white, the output of the finite difference process would be large at those pixels
because they are, in general, substantially different from their neighbors. We need
some method to control image noise.

3.1.4 Smoothing with Convolution

The simplest model of image noise is the additive stationary Gaussian noise (or
Gaussian noise) model, where each pixel has added to it a value chosen indepen-
dently from the same Gaussian (normal) probability distribution. This distribution
almost always has zero mean. The standard deviation is a parameter of the model.
The model is intended to describe thermal noise in cameras and is illustrated in
Figure 3.5.

Gaussian noise tends to result in pixels not looking like their neighbors. Other
kinds of noise have this property too. Examples include: occasional pixels stuck
at full dark or full bright; small random numbers with zero mean added to some
pixel values; or some pixels multiplied by random numbers close to one. It is
natural to attempt to reduce the effects of noise by replacing each pixel with a
weighted average of its neighbors, a process often referred to as smoothing. When
you smooth an image, it often looks as though it was taken by a defocussed camera,
so smoothing is sometimes called blurring.

Replacing each pixel with an unweighted average computed over some fixed
region centered at the pixel is the same as convolution with a kernel that is a block
of ones multiplied by a constant (you should check this). This is a poor model of
blurring; its output does not look like that of a defocused camera (Figure 3.6). The
reason is clear. Assume that we have an image in which every point but the center
point is zero, and the center point is one. If we blur this image by forming an
unweighted average at each point, the result looks like a small, bright box, but this
is not what defocused cameras do. We want a blurring process that takes a small
bright dot to a circularly symmetric region of blur, brighter at the center than at
the edges and fading slowly to darkness. As Figure 3.6 suggests, a set of weights of
this form produces a much more convincing defocus model.

A good formal model for a fuzzy blob is the symmetric Gaussian kernel

Gσ(x, y) =
1

2πσ2
exp

(
− (x2 + y2)

2σ2

)
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d/dx

FIGURE 3.4: Derivative of Gaussian filters are less extroverted in their response
to noise than finite difference filters. The image at top left shows a detail from
a picture of a zebra; top center shows the same image corrupted by zero mean
stationary additive Gaussian noise, with σ = 0.03 (pixel values range from 0 to
1). Top right shows the same image corrupted by zero mean stationary additive
Gaussian noise, with σ = 0.09. The second row shows the finite difference in the
x-direction of each image. These images are scaled so that zero is mid-gray, the
most negative pixel is dark, and the most positive pixel is light; we used a different
scaling for each image. Notice how the noise results in occasional strong derivatives,
shown by a graininess in the derivative maps for the noisy images. The final row
shows the partial derivative in the x-direction of each image, in each case estimated
by a derivative of Gaussian filter with σ one pixel. Again, these images are scaled
so that zero is mid-gray, the most negative pixel is dark, and the most positive pixel
is light; we used a different scaling for each image. The images are smaller than the
input image, because we used a 13 × 13 pixel discrete kernel. This means that the
six rows (resp. columns) on the top and bottom of the image (resp. left and right)
cannot be evaluated exactly, because for these rows the kernel covers some points
outside the image; we have omitted these values. Notice how the smoothing helps
reduce the impact of the noise; this is emphasized by the detail images (between
the second and final row), which are doubled in size. The details show patches that
correspond from the finite difference image and the smoothed derivative estimate.
We show a derivative of Gaussian filter kernel, which (as we expect) looks like the
structure it is supposed to find. This is not to scale (it’d be extremely small if it
were).

illustrated in Figure 3.7. σ is referred to as the standard deviation of the Gaussian
(or its “sigma”!); the units are interpixel spaces, usually referred to as pixels. This
is a continuous fuzzy blob. You can get a discrete fuzzy blob by sampling it. The
constant term makes the integral over the whole plane equal to one and is often
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FIGURE 3.5: The top row shows three realizations of a stationary additive Gaussian
noise process. We have added half the range of brightnesses to these images to show
both negative and positive values of noise. From left to right, the noise has standard
deviation 1/256, 4/256, and 16/256 of the full range of brightness, respectively. This
corresponds roughly to bits zero, two, and five of a camera that has an output range
of eight bits per pixel. The lower row shows this noise added to an image. In
each case, values below zero or above the full range have been adjusted to zero or
the maximum value accordingly.

ignored in smoothing applications. The name comes from the fact that this kernel
has the form of the probability density for a 2D normal (or Gaussian) random
variable with a particular covariance.

This smoothing kernel forms a weighted average that weights pixels at its
center much more strongly than at its boundaries. One can justify this approach
qualitatively: Smoothing suppresses noise by enforcing the requirement that pixels
should look like their neighbors. By downweighting distant neighbors in the average,
we can ensure that the requirement that a pixel looks like its neighbors is less
strongly imposed for distant neighbors. Choice of scale follows from the following
considerations:

� If the standard deviation of the Gaussian is very small—say, smaller than one
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FIGURE 3.6: Although a uniform local average may seem to give a good blurring
model, it generates effects not usually seen in defocusing a lens. The images above
compare the effects of a uniform local average with weighted average. The image on
the left shows a view of grass; in the center, the result of blurring this image using
a uniform local model; and on the right, the result of blurring this image using
a set of Gaussian weights. The degree of blurring in each case is about the same,
but the uniform average produces a set of narrow vertical and horizontal bars—an
effect often known as ringing. The small insets show the weights used to blur the
image, themselves rendered as an image; bright points represent large values and
dark points represent small values (in this example, the smallest values are zero).

pixel—the smoothing will have little effect because the weights for all pixels
off the center will be very small.

� For a larger standard deviation, the neighboring pixels will have larger weights
in the weighted average, which in turn means that the average will be strongly
biased toward a consensus of the neighbors. This will be a good estimate of a
pixel’s value, and the noise will largely disappear at the cost of some blurring.

� Finally, a kernel that has a large standard deviation will cause much of the
image detail to disappear, along with the noise.

Figure 3.8 illustrates these phenomena. You should notice that Gaussian smoothing
can be effective at suppressing noise.

In applications, a discrete smoothing kernel is obtained by constructing a
2k + 1× 2k + 1 array whose i, jth value is

Hij =
1

2πσ2
exp

(
− ((i− k − 1)2 + (j − k − 1)2)

2σ2

)
.

Notice that some care must be exercised with σ. If σ is too small, then only one
element of the array will have a nonzero value. If σ is large, then k must be large,
too; otherwise, we are ignoring contributions from pixels that should contribute
with substantial weight.



38 Chapter 3 Patterns, Smoothing and Filters

-5

0

5

-5

0

5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

FIGURE 3.7: The symmetric Gaussian kernel in 2D. This view shows a kernel scaled
so that its sum is equal to one; this scaling is quite often omitted. The kernel shown
has σ = 1. Convolution with this kernel forms a weighted average that stresses the
point at the center of the convolution window and incorporates little contribution
from those at the boundary. Notice how the Gaussian is qualitatively similar to our
description of the point spread function of image blur: it is circularly symmetric,
has strongest response in the center, and dies away near the boundaries.

3.2 ESTIMATING GRADIENTS AND ORIENTATIONS

We have seen that finite differences give poor estimates of image gradients for noisy
images. Any image gradient of significance to us has effects over a pool of pixels.
For example, the contour of an object can result in a long chain of points where
the image derivative is large. As another example, a corner typically involves many
tens of pixels. If the noise at each pixel is independent and additive, then large
image derivatives caused by noise are a local event. Smoothing the image before
we differentiate will tend to suppress noise at the scale of individual pixels, because
it will tend to make pixels look like their neighbors. However, gradients that are
supported by evidence over multiple pixels will tend not to be smoothed out. This
suggests differentiating a smoothed image (Figure 3.4).

3.2.1 Derivative of Gaussian Filters

The convolution I have described is a sampled analogue of a continuous operation.
If I(x, y) is a continuous image, and W (x, y) is some continuous function, we have
(W ∗I)(x, y) =

∫
u,v

I(x−u, y−v)W (u, v)dudv. Notice that, to make this definition
meaningful, we need to make assumptions about the range of the integral and the
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FIGURE 3.8: The top row shows images of a constant mid-gray level corrupted by
additive Gaussian noise. In this noise model, each pixel has a zero-mean normal
random variable added to it. The range of pixel values is from zero to one, so
that the standard deviation of the noise in the first column is about 1/20 of full
range. The center row shows the effect of smoothing the corresponding image in
the top row with a Gaussian filter of σ one pixel. Notice the annoying overloading
of notation here; there is Gaussian noise and Gaussian filters, and both have σ’s.
One uses context to keep these two straight, although this is not always as helpful as
it could be, because Gaussian filters are particularly good at suppressing Gaussian
noise. This is because the noise values at each pixel are independent, meaning that
the expected value of their average is going to be the noise mean. The bottom
row shows the effect of smoothing the corresponding image in the top row with a
Gaussian filter of σ two pixels.

values of the image and kernel that are analogous to those we made for the sampled
case. Context will tell whether I am referring to the sampled operation (commonly)
or the continuous operation (seldom). Convolution has an important property.
Write shift(I) for an operation that shifts an image (so shift(I)i+tx,j+ty = Iij ,
or in the continuous case, shift(I)(§+ ⊔§, †+ ⊔†) = I(§, †)). Convolution is shift
invariant, meaning that W ∗ shift(I) = shift(W ∗ I). This is true for both
sampled and continuous operations. It can be proven that if an operation is (a)
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linear and (b) shift invariant, then there is some convolution kernel that implements
it. You should remember this result.

Smoothing an image and then differentiating it is the same as convolving it
with the derivative of a smoothing kernel. This fact is most easily seen by thinking
about continuous convolution. First, differentiation is linear and shift invariant.
This means that there is some kernel—we dodge the question of what it looks
like—that differentiates. That is, given a function I(x, y),

∂I

∂x
= K(∂/∂x) ∗ I.

Now we want the derivative of a smoothed function. We write the convolution
kernel for the smoothing as S. Recalling that convolution is associative, we have

(K(∂/∂x) ∗ (S ∗ I)) = (K(∂/∂x) ∗ S) ∗ I = (
∂S

∂x
) ∗ I.

This fact appears in its most commonly used form when the smoothing function is
a Gaussian. We can then write

∂ (Gσ ∗ I)
∂x

= (
∂Gσ

∂x
) ∗ I,

that is, we need only convolve with the derivative of the Gaussian, rather than
convolve and then differentiate. As discussed in Section 7.3, smoothed derivative
filters look like the effects they are intended to detect. The x-derivative filters look
like a vertical light blob next to a vertical dark blob (an arrangement where there
is a large x-derivative), and so on (Figure 7.11). Smoothing results in much smaller
noise responses from the derivative estimates (Figure 3.4).

FIGURE 3.9: The scale (i.e., σ) of the Gaussian used in a derivative of Gaussian
filter has significant effects on the results. The three images show estimates of the
derivative in the x direction of an image of the head of a zebra obtained using a
derivative of Gaussian filter with σ one pixel, three pixels, and seven pixels (left
to right). Note how images at a finer scale show some hair, the animal’s whiskers
disappear at a medium scale, and the fine stripes at the top of the muzzle disappear
at the coarser scale.
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FIGURE 3.10: The gradient magnitude can be estimated by smoothing an image and
then differentiating it. This is equivalent to convolving with the derivative of a
smoothing kernel. The extent of the smoothing affects the gradient magnitude; in
this figure, we show the gradient magnitude for the figure of a zebra at different
scales. At the center, gradient magnitude estimated using the derivatives of a
Gaussian with σ = 1 pixel; and on the right, gradient magnitude estimated using
the derivatives of a Gaussian with σ = 2 pixel. Notice that large values of the
gradient magnitude form thick trails.

The choice of σ used in estimating the derivative is often called the scale of
the smoothing. Scale has a substantial effect on the response of a derivative filter.
Assume we have a narrow bar on a constant background, rather like the zebra’s
whisker. Smoothing on a scale smaller than the width of the bar means that the
filter responds on each side of the bar, and we are able to resolve the rising and
falling edges of the bar. If the filter width is much greater, the bar is smoothed into
the background and the bar generates little or no response (Figure 3.9).

3.2.2 Orientations

As the light gets brighter or darker (or as the camera aperture opens or closes), the
image will get brighter or darker, which we can represent as a scaling of the image
value. The image I will be replaced with sI for some value s. The magnitude
of the gradient scales with the image, i.e., ||∇I|| will be replaced with s||∇I||. This
creates problems for edge detectors, because edge points may appear and disappear
as the image gradient values go above and below thresholds with the scaling. One
solution is to represent the orientation of image gradient, which is unaffected by
scaling (Figure 3.11). The gradient orientation field depends on the smoothing scale
at which the gradient was computed. Orientation fields can be quite characteristic
of particular textures (Figure ??), and we will use this important property to come
up with more complex features below.
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FIGURE 3.11: The magnitude of the image gradient changes when one increases or
decreases the intensity. The orientation of the image gradient does not change; we
have plotted every 10th orientation arrow, to make the figure easier to read. Note
how the directions of the gradient arrows are fixed, whereas the size changes. Philip
Gatward cO Dorling Kindersley, used with permission.
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FIGURE 3.12: The scale at which one takes the gradient affects the orientation field.
We show the overall trend of the orientation field by plotting a rose plot, where the
size of a wedge represents the relative frequency of that range of orientations. Left
shows an image of artists pastels at a fairly fine scale; here the edges are sharp,
and so only a small set of orientations occurs. In the heavily smoothed version on
the right, all edges are blurred and corners become smooth and blobby; as a result,
more orientations appear in the rose plot. Philip Gatward cO Dorling Kindersley,
used with permission.


