
C H A P T E R 4

Simple Image Mosaics

Back in the days when photographs were printed on paper by special stores,
one way to make a photograph of a large object was to take several different,
overlapping pictures; print them; place one printed image down on a corkboard;
then slide the other printed pictures around on a corkboard until they are registered
to the first and one another; and then pin them down. This is amosaic – a collection
of pictures that have been registered (Figure 4.3). There are a number of reasons
to build mosaics. You might simply not have the right camera, and so have to
assemble a big picture out of small ones. In the overlapping portions, you have
more than one picture, and can use this to make improved estimates of pixel values
or to identify moving objects. You can show various interesting changes in the
scene.

Methods for building mosaics out of digital images are now highly developed,
and appear in a number of consumer applications. The key trick is registering
the images. Procedures differ slightly depending on what class of geometric trans-
formation is used to register the images. We will mostly discuss mosaics built
by translating images; Chapter 33.2 describes methods relevant for more general
transformations.

4.1 SIMPLE MOSAICS

For the moment, assume we have two images A and B. These two images are
overlapping views of a scene that can be aligned by a translation. These images are
continuous functions of position in the image plane – they haven’t been sampled
yet. The fact that they can be aligned means that there is some tx, ty so that
A(x, y) = B(x − tx, y − ty) when both x, y ∈ [0, 1]× [0, 1] and x + tx, y + ty ∈
[0, 1]× [0, 1]. Visualize this as placing B on top of A, then sliding B by tx, ty; then
the parts of A and B that overlap look the same. We are given A and B and must
find tx, ty.

Least squares should spring to mind. We are dealing with sampled images,
and so we will search for m,n that are integers, and minimize

Creg(m,n) =
1

No

∑
overlap

(Aij − Bi−m,j−n)
2

where overlap is the rectangle of pixel locations with meaningful values for both A
and B and No is the number of pixels in that rectangle. It is important that Creg
is an average, because we need to compare overlaps of different sizes (Figure 33.2)

Once we have a good estimate of the translation, we could refine it using
bilinear interpolation (Section 33.2) to reconstruct values we don’t have. But min-
imizing this cost function isn’t just a piece of linear algebra. The obvious strategy
for finding m,n is to apply each translation; compute the objective function; then

43



44 Chapter 4 Simple Image Mosaics

Scene

Images

Mosaic

FIGURE 4.1: Top shows a set of overhead images of a simple scene. The dark
boundaries show each of three image frames. Center shows the actual images
obtained in these frames. Bottom shows the mosaic that can be recovered by sliding
images with respect to one another. This mosaic can’t show features that haven’t
been imaged, but does show the relative configuration of scene components.

take the translation with smallest value. This isn’t a good strategy, because we
must evaluate the objective function too often. The obvious modification – assume
that m,n are in a small range, and search only those – doesn’t help because we may
not find the actual minimum. But notice that if we smoothed and subsampled A
and B, we could compute a coarse estimate of m,n from those, and then perhaps
refine the estimate.

4.1.1 Registration, RGB, and Prokudin-Gorskii

Color photography is usually dated to the 1930’s when it first became available
to the public. In fact, James Clerk Maxwell described a method to capture a
color photograph in an 1855 paper. The procedure likely looks straightforward to
you: obtain three color filters, and take a picture of the scene through each of



Section 4.1 Simple Mosaics 45

these filters. Capturing these color separations presented a number of technical
challenges, and the first color photograph was taken by Thomas Sutton in 1861.
Actually displaying pictures obtained like this was tricky. One had to pass red
light through the red separation, green through the green, and blue through the
blue, then ensure all three resulting images lay on top of one another on screen.
Turning them into the image files we are familiar with is also tricky, because each
layer of the separation is typically a bit offset from the others (the camera moved
slightly between photographs), and each layer has aged and been damaged slightly
differently.

A class assignment, now hallowed by tradition in computer vision, but likely
to have originated with A. Efros in 2010, studies this problem. It uses the pictures
of Sergei Mikhailovich Prokudin-Gorskii (1863-1944) traveled the Russian empire
and took color photographs of many scenes. He left Russia in 1918. His negatives
survived and ended up in the Library of Congress. A digitized version of the
collection is available online. The assignment asks students to register the color
separations for some of these images.

This is very like forming a mosaic (the separations overlap; they can be aligned
by translation). It presents two important challenges. First, the separations do not
agree exactly when they overlap – if they did, the image would be a monochrome
image – and so the cost function needs to be adjusted. Second, the high resolution
version of the scans are quite big, and there can be moderately large offsets. Looking
at each offset in turn is hideously expensive. We will deal with that problem in the
next section.

Notation for generalizing the cost function is easy. Write AO(m,n) (etc.) for
the image window of A that overlaps the other image when that image is translated
by m,n. We can write

Creg(m,n) = d(AO(m,n),BO(m,n)).

The original cost function had

d(AO(m,n),BO(m,n)) =
1

No

∑
overlap

(Aij − Bi−m,j−n)
2
.

Useful alternatives include:

� The cosine distance, given by:

∑
overlap

(Aij ∗ Bi−m,j−n)√∑
overlapA2

ij

√∑
overlap B2

i−m,j−n

.

Annoyingly, this cost function is largest when best, even though it’s called a
distance. Some authors subtract this distance from one (its largest value) to
fix this.



46 Chapter 4 Simple Image Mosaics

Squared error
Correlation Cosine distance

FIGURE 4.2: Top left shows a Gurnard, flashing its pectoral fins in alarm, at Long
Beach in Cape Town. Top rest shows the color separations of this image (in
red, green, blue order). The image is slightly blue-green (taken at about 5 meters
depth, where water absorbs red light), and this shows as a darker red separation.
Bottom shows how various cost functions react to registering red to blue. The
correct alignment is at 0, 0 and the images are 257 by 323. Notice that: all the
extrema are in the right place, but the correlation and cosine distance must be
maximized, and the squared error minimized; the squared error changes relatively
little from the best to the worst, because the blue image is rather unlike the red; both
cosine distance and correlation are much more sensitive.

� The correlation coefficient, given by:∑
overlap

(Aij − µA) ∗ (Bi−m,j−n − µB)√∑
overlapA2

ij

√∑
overlap B2

i−m,j−n

where µA =
1

NO

∑
overlap

Aij and

where µB =
1

NO

∑
overlap

Bij .

This is big for the best alignment. Notice how this corrects for the mean of
the overlap in each window.

Each is in the range −1 to 1, and neither scales with the size of the overlap neigh-
borhood. Terminology in this area is severely confused. The cosine distance isn’t
a distance; it is sometimes referred to as normalized correlation; and sometimes as
correlation. Several functions similar to correlation are referred to as correlation.

4.2 TECHNIQUE: SCALE AND IMAGE PYRAMIDS

TODO: two zebra images?



Section 4.2 Technique: Scale and Image Pyramids 47

512 256 128 64 32 16 8

FIGURE 4.3: A Gaussian pyramid of images running from 512x512 to 8x8. On the
top row, we have shown each image at the same size (so that some have bigger
pixels than others), and the lower part of the figure shows the images to scale.
Notice that if we convolve each image with a fixed-size filter, it responds to quite
different phenomena. An 8x8 pixel block at the finest scale might contain a few
hairs; at a coarser scale, it might contain an entire stripe; and at the coarsest scale,
it contains the animal’s muzzle.

Images look quite different at different scales. An image pyramid is a collection
of smoothed and resampled representations of an image. The name comes from a
visual analogy. Typically, each layer of the pyramid is half the width and half
the height of the previous layer; if we were to stack the layers on top of each
other, a pyramid would result. In a Gaussian pyramid, each layer is smoothed
by a symmetric Gaussian kernel and resampled to get the next layer (Figure 4.2).
These pyramids are most convenient if the image dimensions are a power of two or
a multiple of a power of two. The smallest image is the most heavily smoothed; the
layers are often referred to as coarse scale versions of the image.

Now look at the zebra’s muzzle in Figure 4.2, and think about registering this
image to itself. The 8 × 8 version has very few pixels, and looks like a medium
dark bar, darker at the muzzle end. Finding a translation to register this image to
itself should be fairly straightforward, and unambiguous. Assume we find m8, n8.



48 Chapter 4 Simple Image Mosaics

In the 16 × 16 version, some stripes are visible. Registering this image to itself
might be more difficult, because the stripes will create local minima of the cost
function (check you follow this remark; think about what happens if you have the
images registered, and then shift the muzzle perpendicular to the stripes). But if
we have an estimate of the translation from the 8 × 8 version, we do not need to
search a large range of translations to register the 16× 16 version. We need to look
only at four translations: 2 ∗m8, 2 ∗ n8; 2 ∗m8 + 1, 2 ∗ n8; 2 ∗m8, 2 ∗ n8 + 1; and
2 ∗ m8 + 1, 2 ∗ n8 + 1. The same reasoning applies when going from the 16 × 16
version to the 32× 32 version, and so on. This strategy is known as coarse-to-fine
search.

4.2.1 The Gaussian Pyramid

With a little notation, we can write simple expressions for the layers of a Gaussian
pyramid. The operator S↓ downsamples an image; in particular, the j, kth element
of S↓(I) is the 2j, 2kth element of I. The nth level of a pyramid P (I) is denoted
P (I)n. With this notation, we have

PGaussian(I)n+1 = S↓(Gσ ∗ ∗PGaussian(I)n)
= (S↓Gσ)PGaussian(I)n)

(where we have written Gσ for the linear operator that takes an image to the
convolution of that image with a Gaussian). The finest scale layer is the original
image:

PGaussian(I)1 = I.

TODO: make this a procedure box

Set the finest scale layer to the image
For each layer, going from next to finest to coarsest
Obtain this layer by smoothing the next finest
layer with a Gaussian, and then subsampling it

end

Algorithm 4.1: Forming a Gaussian Pyramid.

TODO: procedure box for translation registering an image to another

4.3 BUILDING MOSAICS

Here is a simple procedure to build a mosaic from a set of images {I1, . . . , IN},
sketched in Figure 4.3. Construct a large array of pixels value “unknown” to serve
as the mosaic. Choose an image – say I1 – to place at the center, and transfer I1’s
pixels to the corresponding locations in the mosaic. In Figure 4.3, step I shows this.
Now find an image Ik which overlaps with an image in the mosaic and register it to
that image, then update the mosaic using its pixels. For step II in Figure 4.3 this
is I2 which is registered to I1. Proceed until there aren’t any images that overlap



Section 4.3 Building Mosaics 49

1

2

3

4

I II III IV

FIGURE 4.4: Top left shows a simple scene with the location of four images; these
are shown on the top right. The steps of creating a mosaic are sketched in the
Roman numeral panes on the bottom. In this case, the translation of the fourth
image with respect to the first is poorly estimated; more detail in the text.

(step III, I3 to I2; step IV, I4 to I3). Now compute the pixel values in the mosaic
using all the overlap information.

In some applications, the image with a good overlap will be obvious. For
example, if you build a mosaic out of overhead aerial images, the images are going
to be timestamped, and the next image will overlap rather well with the current
image. In other cases, you can try to register coarse scale versions of the images
with one another. Not all pairs will register, but those that do with a small enough
translation will likely have a good overlap, and you can use this to obtain an
overlapping image.

There are a variety of ways to compute a mosaic from registered images,
depending on what one is trying to achieve. Many locations in the mosaic are
overlapped by multiple images. At these locations, you have more than one estimate
of the pixel value (one from each image that overlaps that location). One strategy
is to simply average these values. There are more interesting possibilities than
taking a mean. For example, imagine you want to build a mosaic that suppresses
the movement of a moving object (Figure 33.2). Averaging will produce a mosaic
with a blurred version of the object. Instead, collect all the values for each location,
and take the median. As the figure illustrates, this will suppress the moving object.
Alternatively, imagine you want to emphasize the movement; then collect all the
values, and the value most unlike the median.

4.3.1 Bundle Adjustment

Our simple procedure does not produce the best possible mosaic. To see this,
assume you have images I1, . . . , I4, as in Figure 4.5, and you introduce them into
the mosaic in that order. Write T2→1 for the translation to align I2 with I1 by



50 Chapter 4 Simple Image Mosaics

1

2

2

3

3

1

4

4 5

5

FIGURE 4.5: Top shows a set of images of a simple scene with a moving object
(the circle). This is at location 1 in frame 1, and so on. The background does not
move. The frames are registered to one another to produce a mosaic. The value at
a location in the mosaic is a summary of possibly many pixel values (one for each
image that overlaps that location). Different procedures for summarization lead to
quite different mosaics. Row 2 shows what happens if one averages. The circles
affect the average, and appear. But using a median will produce row 3 – here the
moving object has been suppressed, and we can see the background. Finally, using
the pixel value most different from the median yields row 4, where the motion of
the circle is now visible.



Section 4.3 Building Mosaics 51

1

2

3

4

I II III IV

FIGURE 4.6: Top left shows a simple scene with the location of four images; these
are shown on the top right. The steps of creating a mosaic are sketched in the
Roman numeral panes on the bottom. In this case, the translation of the fourth
image with respect to the first is poorly estimated; more detail in the text.

translating I2 to the right place in the mosaic coordinate system. The effect of this
translation is shown in step II in Figure 4.5. Now you estimate T3→1 to register I3
to I1 (Step III). Notice that the patterns in the scene have been chosen to show an
exaggerated case where the registration error between I3 and I1 is likely to be large
(many different horizontal translations of I3 will register with I1 well). Finally, you
estimate T4→3 (Step IV). Notice how error has cascaded. I3 is poorly registered to
I1, and I4 is registered to I3, meaning that I4 is poorly registered to I1.

Notice that this isn’t necessary. Some pixels of I4 overlap I2. If these pixels
contributed to the registration, I4 and I3 could be properly registered. This prob-
lem occurs quite generally – it is not just a result of an odd scene – and is often
referred to as a failure of loop closure. This refers to the idea that if 2 is registered
to 1, 3 is registered to 2, 4 is registered to 3, all the way up to N is registered to
N − 1, N may not be registered to 1 at all well – the loop does not close.

There are several procedures to prevent or control this kind of error propa-
gation. Start by registering the images by pairs as described. The easiest strategy
is now to repeat: fix all but one image, then register that image to all the others
it overlaps with. This approach can work, but may be slow, because it may take
a long time for improvements to propagate across all the images. The alternative,
which is better but can be onerous, is to fix one image in place, then adjust all
others to register in every overlap. Associate a translation ti;x, tj;y with each image
Ii, and set t1;x = 0, t1;y = 0. Write t for a vector of all these translations except
t1;x, t1;y, and Oij(t) for the area of the overlap between Ii and Ij . Now minimize

∑
i,j∈overlapping pairs of images

 1

Oij(t)

∑
x,y∈overlap

[
Ii;x+ti;x,y+ti;y − Ij;x+tj;x,y+tj;y

]2
as a function of t. This isn’t a straightforward optimization problem. If you require



52 Chapter 4 Simple Image Mosaics

that t are integers – so that the sample points of overlapping images lie on top of
one another – then searching for the right set of integer values is hard. If, instead,
you treat this as a continuous optimization problem, the objective function is hard
to evaluate because you will need to do a lot of bilinear interpolation. A coarse-to-
fine search will work for this problem, too. While it is important to know that this
difficulty is present, there is no need to resolve it in detail yet (but see Section 33.2
if you’re concerned).


