
C H A P T E R 2

Simple Image Processing

2.1 IMAGES AS SAMPLED FUNCTIONS

Your first encounter with an image as something to compute with (rather than look
at) is likely as an array for an intensity image, or set of three arrays for a color
image. Knowing how the image ended up in this form is important if you want to
interpret it. We will develop a quite detailed model of the geometry and physics
underlying images later; a simple model will have to do for the moment.

The image you see as three arrays started as a spectral energy field – energy
E as a function of position x, direction ω and wavelength λ, so E(x, ω, λ). This
energy field is created by light leaving light sources, reflecting from surfaces, and
eventually arriving at the entrance to the camera (Figure 2.1). This is usually but
not always a lens. Various processes in lens and camera map some of the light
that arrives to some photosensitve layer at the back of a camera. In turn, this
photosensitive layer transduced the energy field into arrays of numbers.

The photosensor is divided into pixels (Figure 2.2). These pixels compute
a weighted average of E(x, ω, λ), averaged over a small range of positions (typi-
cally the size of the pixel) and a small range of directions (which is determined by
the position of the pixel; the lens system takes care of this) and a large range of
wavelengths. Assume the coordinate system is placed on the sensor, with x and
y coordinates in the natural directions on the grid, and the sensor at z = 0. The
grid separation between pixels is ∆x in the x direction and ∆y in the y direction.
Then the pixel at the i, j’th location is at (i∆x, j∆y, 0). The vast majority of
photosensors are linear. This means for P a small range of positions centered at
the pixel, W a small range of directions and Λ the wavelengths of interest, we can
write the value reported by the pixel as

pij = k

∫
P

∫
W

∫
Λ

E(u, ω, λ)w(u, ω, λ)dudωdλ

here w is the weight function or sensitivity of the sensor

= k

∫
Λ

E([i∆x, j∆y, 0] , ω, λ)w(λ)dudλ

because the averages are over very small ranges

= kΦ(i∆x, j∆y, 0)

for an appropriate Φ (write this function out to be sure). The pixel at i, j on the
grid is a sample of a function of position (Figure ??).

Sampling a function can produce something that represents the function very
poorly indeed. As Figure ?? illustrates, the key question is how many samples you
draw compared to how much detail there is in the function. This has important
consequences. Assume you wish downsample an image – reduce its size in each

14

Section 2.1 Images as Sampled Functions 15

Light source

Spectral
Energy
Field

Lens

Sensor

FIGURE 2.1: A high-level model of imaging. Light leaves light sources and reflects
from surfaces. Eventually, some light arrives at a camera and enters a lens system.
Some of that light arrives at a photosensor inside the camera.

dimension. The simplest strategy is to take every second pixel in each direction
(downsampling by 2). This, as Figure ?? illustrates, is a bad idea. The result can
seriously misrepresent the image. Notice how small structures can appear to be
big ones, or disappear entirely. The general term for the kind of errors seen here
is aliasing. In Chapter 33.2, we will be much more precise about these issues, and
demonstrate a procedure to avoid aliasing.

Now imagine you wish to downsample by 3/2 (so a 150 × 150 image goes to
a 100 × 100 image). There are two ways to approach this problem. You could
scan the source (larger - L) image and, for each pixel, determine where it goes.
Alternatively, you could scan the target (smaller - S) image and, for each pixel,
determine what value it should receive. Scanning the source generally would lead
to a problem. The rule Lij → S(2/3)∗(i−1),(2/3)∗(j−1) when the source coordinates
are integers yields an image of the right size (check this), and yields: L11 → S11;
L41 → S31; and so on. But there is a hole at S21, because we can only put values
into the target image at integer locations.

Scanning the target yields another difficulty. The i, j’th location of S must
get the value at L(3/2)∗(i−1),(3/2)∗(j−1), but the coordinates are not integer values –

16 Chapter 2 Simple Image Processing

...

...

...

Spectral energy density

Pixel value

FIGURE 2.2: The photosensor is divided into a grid of pixels, which are small sen-
sitive locations. Each pixel receives an incoming spectral energy field, and turns it
into a number. This number is typically a weighted average over a position in the
sensor, a very small range of incoming directions and a large range of wavelengths.
Each pixel is at a different position in the sensor, and the lens system and camera
geometry ensure that each sees a different set of incoming directions, so that the
averages produce a coherent image.

we must obtain an approximate value. Two approximation procedures are common.
One is nearest neighbors – you take the value at the integer point closest to location
whose value you want (Figure 33.2). So for the running example, you would use the
value at 2, 2 if you wanted the value at 1.5, 1.5. As Figure 33.2 shows, this strategy
has problems.

A much better procedure is interpolation, where we fit a function to some pixel
values then sample the fitted function. Most widely used is bilinear interpolation.
We want a value at i + δi, j + δj, where i and j are integers; 0 < δi < 1; and
0 < δj < 1. Write vij for the value at i, j. Then use

v = vij(1− δi)(1− δj) + vi+1,j(δi)(1− δj) + vi,j+1(1− δi)(δj) + vi+1,j+1(δi)(δj).

Notice that if δi and δj are both zero, then v = vij ; if they are both one, v =
vi+1,j+1; and v will interpolate the value at the other two corners, too. By a little
manipulation, you can show that this procedure boils down to: predict a value
for i + δi, j using a linear interpolate; predict a value for i + δi, j + δj using a
linear interpolate; now linearly interpolate between these two to get a value for
i + δi, j + δj. Modern hardware is particularly efficient at bilinear interpolation,
and any reasonable software environment will be able to do this for you.

More complicated interpolation procedures are possible. In bicubic interpola-
tion, the interpolate is cubic in δx and δy and depends on other neighboring pixels.
Again, any reasonable software environment will be able to do this for you. While
this procedure is more complicated and slower, in some applications the small im-
provements are justified. One occasionally important difference between bicubic
interpolation is that for a bilinear interpolate, the local maxima are always at grid
points, but for a bicubic interpolate, they may not be (exercises).

Section 2.1 Images as Sampled Functions 17

256x256 128x128 64x64 32x32 16x16

Image Downsampled by 4 Smoothed then
downsampled by 4

FIGURE 2.3: Because each pixel in the sensor averages over a small range of direc-
tions and positions, the process mapping the input spectral energy distribution to
pixel values can be thought of as sampling. On the left, is a representation of the
energy distribution as a continuous function of position. The value reported at each
pixel is the value of this function at the location of the pixel (right).

Interpolation is particularly important if you want to upsample an image,
where you increase the number of pixels in a grid. To go from, say, a 100 × 100
image to a 200× 200 image, you could simply double each pixel (replace each pixel
with a 2 × 2 block with the same value). But most upsampling requires finding
intermediate values, which interpolation provides.

2.1.1 Color Images

Humans see color by comparing the response of different kinds of photoreceptor
at nearby locations (Chapter 33.2). The main difference between these kinds of
photoreceptor is in the sensitivity of the sensor with wavelength. Roughly, one
type of sensor responds more strongly to longer wavelengths, another to medium
wavelengths, and a third to shorter wavelengths (there are other kinds of sensor,
and other differences).

Cameras parallel this process. The sensors used for the R (or red) layer of
an RGB image respond more strongly to longer wavelengths; for the G (or green)

18 Chapter 2 Simple Image Processing

Spectral energy density Pixel values

FIGURE 2.4: Top row shows an image on the left, and then a set of versions
resampled to different grids then expanded to the original size. Notice how detail
is lost in the resampling process. Some small boxes disappear, and others turn
into large boxes. Bottom left shows a picture of a zebra (copyright free, from
Flickr user Fouquier); center left shows this image downsampled by four; bottom
right shows what happens when the image is smoothed, then downsampled. The
downsampled images are shown at the same size as the originals by simply printing
larger pixels.

layer, to medium wavelengths; and the B (or blue) to shorter wavelengths. Cameras
must be engineered to produce the response of three different types of sensor at the
same place. This can be done by using three imaging sensors and arranging for each
sensor to receive the same light (lenses, mirrors, that sort of thing). Such multiccd
cameras tend to be larger, heavier and more expensive. The more common strategy
is to use one imaging sensor, and arrange that different pixels respond differently
to wavelength. Typically, there are three types of pixel (R, G, and B), interleaved
in a mosaic (Figure 33.2). This means that at many locations the camera does not
measure R (or G, or B) response, and it obtains a value by interpolation.

Generally, mosaic patterns have more G pixels than R or B pixels. This is
because G pixels are sensitive to a wider range of visible wavelengths than R and
B pixels, and so the interpolation yields better results. Regular mosaic patterns
can create effects in images, and there are demosaicing algorithms to remove these
effects.

2.2 TRANSFORMING PIXEL VALUES

Linear image sensors present problems. The dynamic range (ratio of largest value
to smallest value) of spectral energy fields can be startlingly large (1e6: 1 is often
cited). Simple consumer cameras report 8 bits (256 levels) of intensity per channel.
A picture from a linear camera that reports 8 bits per channel will look strange,
because even relatively simple scenes have a higher dynamic range than 255. One
can build cameras that can report significantly higher dynamic ranges, but this
takes work (Chapter 33.2). If the camera has a linear response and a dynamic
range of 255, either a lot of the image will be too dark to be resolved, or much
of the image will be at the highest value, or both will happen. This is usually

Section 2.2 Transforming Pixel Values 19

1D Interpolation

2D Interpolation,
top view

2D Interpolation,
3/4 view

FIGURE 2.5: Top row shows interpolation in 1D. To obtain a value for a location
between samples, we could: choose the value of the closest sample (nearest neighbors,
left; connect the two closest samples with a line segment, then sample that (linear
interpolation, center); or construct a cubic curve between the four closest samples
and sample that (cubic interpolation, right). Center shows grids that capture what
happens when you downsample an image. On the left, a simple 4× 4 image, as a
grid of known (black) pixel values. To downsample this to a 3× 3 image, we must
evaluate the image at the red locations (center). On the right, these locations
placed on the original grid. For four of the red locations, we can evaluate using 1D
linear interpolation, but the red point in the center must be evaluated, too. We can
do so by (a) linearly interpolating horizontally to get values at the green squares
then (b) linearly interpolating those vertically to get the value. This is bilinear
interpolation. Bottom row shows a 3D view, with the grid on the bottom and
function values represented by height above the grid.

fixed by ensuring that the number digitized by the camera isn’t linearly related to
brightness. Internal electronics ensures that the camera response function mapping
the intensity arriving at the sensor to the reported pixel value looks something
like Figure 2.7. This increases the response to dark values, and reduces it to light
values, so that the overall distribution of pixel values is familiar. Typically, the
function used approximates the response of film (which isn’t linear) because people
are familiar with that. A camera response function is one example of a pointwise
image transformation.

20 Chapter 2 Simple Image Processing

"Split"
light

Sensors

Lens

Mosaiced
Sensor

Lens

FIGURE 2.6: There are two main ways to obtain color images. One can (as in top
left) build a multiccd camera with three imaging sensors. Each has a different
response to wavelengths. The cheaper and lighter alternative is to use one imaging
sensor (bottom left) but have a mosaic of pixels with different responses. This
can be achieved by placing a small filter on each sensor location. Right shows one
traditional such pattern of filters, a Bayer pattern.

Intensity

R
ep

or
te

d
pi

xe
l v

al
ue

FIGURE 2.7: A typical camera response function, mapping the response a linear
sensor would compute to the output recorded by the camera. Notice that locations
that would be quite dark for a linear sensor will be lighter; but as the linear sensor
gets very bright, the output recorded by the camera grows slowly. This means that
the range of outputs is smaller than the range of inputs, which is helpful for practical
cameras. This response function is typically located deep in the camera’s electronics.
Typical consumer cameras apply a variety of transforms before reporting an image,
though one can often persuade cameras to produce an untransformed, linear response
image (a RAW file).

Most such transformations occur after the image has been digitized. You

Section 2.3 Transforming and Warping Images 21

Input

Input

O
ut
pu
t

Output

FIGURE 2.8: Mapping individual pixel values using the mapping in the center will
transform the image on the left to that on the right. This function maps light pixel
values to dark ones, and vice versa, and is often called a negative.

FIGURE 2.9: Mapping individual pixel values using the mapping in the center will
transform the image on the left to that on the right. Notice how the mapping
compresses the range of dark and light pixels, and expands that of mid-range pixels,
so adjusting the contrast of the image.

take the array of pixels and apply some function to each pixel value. Simple, but
useful, examples include: forming a negative (map x to 1−x, Figure 2.8); contrast
adjustment (choose a function that makes dark pixels darker and light pixels lighter,
Figure 2.9); and gamma correction (using a function that corrects for a quirk of
image encoding, Figure 2.10).

2.3 TRANSFORMING AND WARPING IMAGES

Two usual conventions for image coordinate systems is shown in Figure 2.11. The
inversion of the y-axis and of the order of coordinates in one is an annoying leftover
from the way matrices are indexed. When I write Iij , I mean this coordinate
system, so I00 is the top left corner of the image, and 0 ≤ i ≤ M and 0 ≤ j ≤ N
– the image is M × N pixels. In this coordinate system, increasing i goes down
the image, and increasing j moves to the left. When I write I(x, y), I mean a
coordinate system in which the bottom left of the image is (0, 0), the top right of
the image is (1, a) (where a would be 1 if the image was square, a < 1 if the image
is short and wide, and a > 1 if the image is tall and narrow). In this view of an
image, we will not worry about the number of pixels; if x, y refers to a point that
isn’t on the pixel grid, I assume it is reconstructed using bilinear interpolation.

Write S for a source image and T for a target image. Many important trans-
formations have the form T (u(x, y), v(x, y)) = S(x, y). Simpler examples include:

22 Chapter 2 Simple Image Processing

FIGURE 2.10: Many imaging and rendering devices have a response that is a power
of the input, so that output = Cinputγ , where γ is a parameter of the device. One
can simulate this effect by applying a transform like those shown in the center
(curves for several values of γ). Note that you can remove the effect of such a
transform – gamma correct the image – by applying another such transform with an
appropriately chosen γ. The image on the left is transformed to the two examples
on the right with different γ values.

� Translating an image where u(x, y) = x+ tx, v(x, y) = y + ty (check that
if tx > 0, ty > 0, the image moves up and to the right, as in the figure).

� Rotating an image where u(x, y) = x cos θ−y sin θ, v(x, y) = x sin θ+y cos θ
(check that if θ > 0, the rotation is counterclockwise, as in the figure).

� A Euclidean transformation is a rotation and scale, so u(x, y) = x cos θ−
y sin θ + tx, v(x, y) = x sin θ + y cos θ + ty.

These cases are simpler, because the source does not shrink or grow, so we need
not worry too much about sampling error.

There is a general algorithm that works well. Scan the target image pixels
in some order. For each pixel location s, t in the target image obtain x, y so that
s = u(x, y), t = v(x, y). Obtain the value of the source image at x, y, and place it
in the s, t location. There are two cases where x, y may not be on the pixel grid:
in one, it lies between four pixel locations, so you use a bilinear interpolate; in the
other, it is way outside the source image, so you use some other value (usually,
either light, dark or mid-gray, depending). This procedure is known as inverse
warping.

You might wish to forward warp – scan the source image, compute the coor-
dinates of each pixel in the new image, then place the pixel value at that location.

Section 2.4 Images in Terms of Other Images 23

M

N
1,1 1,6

5, 1

1

a

u, v

u, w x, w

FIGURE 2.11: Two common coordinate systems for images. On the left, the origin
is at the top left corner, and we count in pixels. This is an M × N image. I will
use the convention Iij for points in this coordinate system, so the top right pixel is
I16. On the right, the origin is at the bottom left, and the coordinate axes are more
familiar. It is a good idea to use a range from 0 − 1 (rather than 0 −M) in this
coordinate system, but if the image is not square one direction will run from 0 to
a. I will use the convention I(x, y) for points in this coordinate system, so that the
bottom left pixel is I(u, v).

If you do this, the target image will likely have holes in it, for reasons explained
above (Section 2.1).

More complicated warps include

� Scaling an image uniformly where u(x, y) = sx, v(x, y) = sy (check that
if s > 1, the image gets bigger, and if s < 1, it gets smaller, as in the figure).

� Scaling an image non-uniformly where u(x, y) = sx, v(x, y) = ty.

� Affine transformations where u(x, y) = ax+ by+ c, v(x, y) = dx+ ey+ f .

� Projective transformations where u(x, y) = ax+by+c
gx+hy+i , v(x, y) =

dx+ey+f
gx+hy+i .

Generally, these transformations are implemented by inverse warping, but you may
need to take care to smooth the image first. This is because these transformations
could cause the image to get smaller. In turn, there is a danger of aliasing (as in
Section 2.1). This can be reduced by smoothing the source image before warping
it.

2.4 IMAGES IN TERMS OF OTHER IMAGES

On occasion, it is useful to represent images in terms of other images. For example,
imagine you have a large set of face images. It is natural to think about (a) what
the “average” face looks like and (b) how a particular face is different from the
average. A representation on principal components achieves this.

24 Chapter 2 Simple Image Processing

Translate
Source image Target image

Rotate

FIGURE 2.12: Write S for a source image and T for a target image. Top row shows
an image translation which maps the source pixel at (x, y) to the location x + tx,
y + ty in the target (so T (x + tx, y + ty) = S(x, y)). You should confirm that for
this figure, tx > 0, ty > 0. Bottom row shows an image rotation, where where
T (x cos θ−y sin θ, x sin θ+y cos θ) = S(x, y). You should confirm that in this figure,
θ > 0. Generally, one implements these transformations by an inverse warp (see
text). In each figure, the dark frames show the set of pixels in the source and target
images. Notice that some target pixel values may be unknown, because their value
comes from outside the source frame.

2.4.1 Quick Principal Components Analysis

Assume we have a dataset of N d-dimensional vectors {x}. This dataset has mean
mean ({x}) and covariance Covmat ({x}). Principal components analysis yields a set
of directions pj , which are eigenvectors of the covariance matrix. These directions
are orthonormal (so that pT

i pj is one if i = j and zero otherwise.

Any data item xi can be represented as

xi = mean ({x}) +
w∑

j=1

si,jpj .

Most datasets have the remarkable property that this representation has very low
error even when w is considerably smaller than d (Chapter 33.2 if you haven’t seen
this before). The coefficents si,j have strong properties, too. First, the mean over
the dataset of each coefficient is zero, so

1

N

∑
i

si,j = 0

Section 2.4 Images in Terms of Other Images 25

Scale

Non Uniform
Scale

FIGURE 2.13: Top row shows a uniform image scale which maps the source pixel
at (x, y) to the location sx, sy in the target (so T (sx, sy) = S(x, y)). You should
confirm that for this figure, s > 1. Bottom row shows a non-uniform image
scale which maps the source pixel at (x, y) to the location sx, ty in the target (so
T (sx, ty) = S(x, y)). You should confirm that for this figure, s > 1 > t. Generally,
one implements these transformations by an inverse warp, but doing so requires
care: because the image changes size, it may need smoothing before rescaling.

and second, the directions can be ordered by the variance of the coefficients. Write

var ({s})j =
1

N

∑
i

s2i,j

for the variance of the j’th coefficient; then if k > j, var ({s})k < var ({s})j . Note
that var ({s})j is the j’th largest eigenvalue of the covariance. The pj are known
as principal components (sometimes loadings) of the dataset; the si,j are sometimes
known as scores, but are usually just called coefficients. Forming the representation
is called principal components analysis or PCA.

2.4.2 Example: Representing Faces with Principal Components

An image is usually represented as an array of values. We will consider intensity
images, so there is a single intensity value in each cell. You can turn the image
into a vector by rearranging it, for example stacking the columns onto one another.
This means you can take the principal components of a set of images. Doing so was
something of a fashionable pastime in computer vision for a while, though there
are some reasons that this is not a great representation of pictures. However, the
representation yields pictures that can give great intuition into a dataset.

Figure 2.16 shows the mean of a set of face images encoding facial expressions
of Japanese women (available at http://www.kasrl.org/jaffe.html; there are
tons of face datasets at http://www.face-rec.org/databases/). I reduced the

26 Chapter 2 Simple Image Processing

Source image Target image

Affine
transformation

Projective
transformation

FIGURE 2.14: Top row shows an affine transformation of the image which maps
the source pixel at (x, y) to the location ax + by + c, dx + ey + f in the target
(so T (ax + by + c, dx + ey + f) = S(x, y)). You should confirm that, for this
figure, (ae − bd) > 0. Bottom row shows a projective transformation of the
image, which maps the source pixel at (x, y) to the location (ax+by+c

gx+hy+i ,
dx+ey+f
gx+hy+i) (so

T (ax+by+c
gx+hy+i ,

dx+ey+f
gx+hy+i) = S(x, y)). Generally, one implements these transformations

by an inverse warp, but doing so requires care: because the image changes size, it
may need smoothing before rescaling.

images to 64x64, which gives a 4096 dimensional vector. The eigenvalues of the
covariance of this dataset are shown in figure 2.15; there are 4096 of them, so it’s
hard to see a trend, but the zoomed figure suggests that the first couple of hundred
contain most of the variance. Once we have constructed the principal components,
they can be rearranged into images; these images are shown in figure 2.16. Principal
components give quite good approximations to real images (figure 2.17).

The principal components sketch out the main kinds of variation in facial
expression. Notice how the mean face in Figure 2.16 looks like a relaxed face, but
with fuzzy boundaries. This is because the faces can’t be precisely aligned, because
each face has a slightly different shape. The way to interpret the components is to
remember one adjusts the mean towards a data point by adding (or subtracting)
some scale times the component. So the first few principal components have to
do with the shape of the haircut; by the fourth, we are dealing with taller/shorter
faces; then several components have to do with the height of the eyebrows, the
shape of the chin, and the position of the mouth; and so on. These are all images of
women who are not wearing spectacles. In face pictures taken from a wider set of
models, moustaches, beards and spectacles all typically appear in the first couple
of dozen principal components.

A representation on enough principal components results in pixel values that
are closer to the true values than the measurements (this is one sense of the word

Section 2.4 Images in Terms of Other Images 27

0 1000 2000 3000 4000
0

5

10

15

20
Eigenvalues, total of 213 images

Number of eigenvalue

V
al

u
e

0 5 10 15 20
0

5

10

15

20
Eigenvalues, total of 213 images

Number of eigenvalue

V
al

u
e

FIGURE 2.15: On the left,the eigenvalues of the covariance of the Japanese facial
expression dataset; there are 4096, so it’s hard to see the curve (which is packed
to the left). On the right, a zoomed version of the curve, showing how quickly the
values of the eigenvalues get small.

“smoothing”). Another sense of the word is blurring. Irritatingly, blurring reduces
noise, and some methods for reducing noise, like principal components, also blur
(figure 2.17). But this doesn’t mean the resulting images are better as images. In
fact, you don’t have to blur an image to smooth it. Producing images that are both
accurate estimates of the true values and look like sharp, realistic images requires
quite substantial technology, beyond our current scope.

28 Chapter 2 Simple Image Processing

Mean image from Japanese Facial Expression dataset

First sixteen principal components of the Japanese Facial Expression dat

a

FIGURE 2.16: The mean and first 16 principal components of the Japanese facial
expression dataset.

Section 2.4 Images in Terms of Other Images 29

Sample Face Image

mean 1 5 10 20 50 100

FIGURE 2.17: Approximating a face image by the mean and some principal compo-
nents; notice how good the approximation becomes with relatively few components.

