
C H A P T E R 19

Image Capture

19.1 CAMERAS

19.1.1 The Pinhole Camera

A pinhole camera is a light-tight box with a very small hole in the front (Fig-
ure 19.1). Think about a point on the back of the box. The only light that arrives
at that point must come through the hole, because the box is light-tight. If the
hole is very small, then the light that arrives at the point comes from only one
direction. This means that an inverted image of a scene appears at the back of
the box (Figure 19.1). An appropriate sensor (CMOS sensor; CCD sensor; light
sensitive film) at the back of the box will capture this image.
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FIGURE 19.1: The pinhole imaging model. On the left, a light-tight box with a
pinhole in it views an object. The only light that a point on the back of the box
sees comes through the very small pinhole, so that an inverted image is formed on
the back face of the box. On the right, the usual geometric abstraction. The box
doesn’t affect the geometry, and is omitted. The pinhole has been moved to the back
of the box, so that the image is no longer inverted. The image is formed on the
plane z = f , by convention. Notice the coordinate system is left-handed, because
the camera looks down the z-axis. This is because most people’s intuition is that z
increases as one moves into the image. The text provides some more detail on this
point.

Pinhole camera models produce an upside-down image. This is easily dealt
with in practice (turn the image the right way up). An easy way to account for this
is to assume the sensor is in front of the hole, so that the image is not upside-down.
One could not build a camera like this (the sensor blocks light from the hole) but it
is a convenient abstraction. There is a standard model of this camera, in a standard
coordinate system. The coordinate system is left-handed even though coordinate
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systems in 3D are usually right-handed coordinate systems. This is because most
people’s intuition is that z increases as one moves into the image. The pinhole –
usually called the focal point – is at the origin, and the sensor is on the plane z = f .
This plane is the image plane, and f is the focal length. We ignore any camera
body and regard the image plane as infinite.

Under this highly abstracted camera model, almost any point in 3D will map
to a point in the image plane. We image a point in 3D by constructing a ray through
the 3D point and the focal point, and intersecting that ray with the image plane.
The focal point has an important, distinctive, property: It cannot be imaged, and
it is the only point that cannot be imaged.

Similar triangles yields that the point (X,Y, Z) in 3D is imaged to

(fX/Z, fY/Z, f)

on the sensor (Figure 19.1). Notice that the z-coordinate is the same for each point
on the image plane, so it is quite usual to ignore it and use the model

(X,Y, Z)→ (fX/Z, fY/Z).

The focal length just scales the image. In standard camera models, other scaling
effects occur as well, and we write projection as if f = 1, yielding

(X,Y, Z)→ (X/Z, Y/Z).

The projection process is known as perspective projection. The point where
the z-axis intersects the image plane (equivalently, where the ray through the focal
point perpendicular to the image plane intersects the image plane) is the camera
center. Remarkably, in almost every publication in computer vision the camera
is expressed in left-handed coordinates and everything else works in right-handed
coordinates. The exercises demonstrate that there is no real difficulty here.

Remember this: Most practical cameras can be modelled as a pinhole
camera. The standard model of the pinhole camera maps

(X,Y, Z)→ (X/Z, Y/Z).

Figure 19.1 shows important terminology (focal point; image plane; camera
center).

19.1.2 Perspective Effects

Perspective projection has a number of important properties, summarized as:

• lines project to lines;

• more distant objects are smaller;
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FIGURE 19.2: Perspective projection maps almost any 3D line to a line in the image
plane (left). Some rays from the focal point to points on the line are shown as
dotted lines. The family of all such rays is a plane, and that plane must intersect
the image plane in a line as long as the 3D line does not pass through the focal
point. On the right, two 3D objects viewed in perspective projection; the more
distant object appears smaller in the image.

• lines that are parallel in 3D meet in the image;

• planes have horizons;

• planes image as half-planes.

Lines project to lines: Almost every line in 3D maps to a line in the image.
You can see this by noticing that the image of the 3D line is formed by intersecting
rays from the focal point to each point on the 3D line with the image plane. But
these rays form a plane, so we are intersecting a plane with the image plane, and
so obtain a line (Figure 19.2). The exceptions are the 3D lines through the focal
point – these project to points.

More distant objects are smaller: The further away an object is in 3D,
the smaller the image of that object, because of the division by Z (Figure 19.2).

Lines that are parallel in 3D meet in the image: Now think about a
set of infinitely long parallel railroad tracks. The sleepers supporting the tracks are
all the same size. Distant sleepers are smaller than nearby sleepers, and arbitrarily
distant sleepers are arbitrarily small. This means that parallel lines will meet in the
image. The point at which the lines in a collection of parallel lines meet is known
as the vanishing point for those lines (Figure 19.3). The vanishing point for a set
of parallel lines can be obtained by intersecting the ray from the focal point and
parallel to those lines with the image plane (Figure 19.3).

Planes have horizons: Now think about the image of a plane. As Fig-
ure 19.5 shows, the plane through the focal point and parallel to that plane produce
a line in the image, known as the horizon of the plane.

Planes image as half-planes: For an abstract perspective camera, any
point on the plane can be imaged to a point on the image plane. In practical
cameras, we cannot image points that lie behind the camera in 3D. Now cast a ray
through the focal point and some point x in the image plane. If x is on one side of
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FIGURE 19.3: Perspective projection maps a set of parallel lines to a set of lines that
meet in a point. On the left, a set of lines parallel to the z-axis, with “railway
sleepers” shown. As these sleepers get further away, they get smaller in the image,
meaning the projected lines must meet. The vanishing point (the point where they
meet) is obtained by intersecting the ray parallel to the lines and through the focal
point with the image plane. On the right, a different pair of parallel lines with a
different vanishing point. The figure establishes that, if there are more than two
lines in the set of parallel lines, all will meet at the vanishing point.

X

Y

Z

X

Y

Z

horizon horizon

x

FIGURE 19.4: Left shows a plane in 3D (in this case, y = −1). The intersection of
the plane through the focal point parallel to the 3D plane (in this case, y = 0) and
the image plane, forms an image line called the horizon. This line cuts the image
plane into two parts. Construct the ray through the focal point and a point x in the
image plane. For x on one side of the horizon, this ray will intersect the 3D plane
in the half space z > 0 (and so in front of the camera, shown here). If x is on
the other side of the horizon, the intersection will be in the half space z < 0 (and
so behind the camera, where it cannot be seen). Right shows a different 3D plane
with a different horizon. The gradients on the planes indicate roughly where points
on the 3D plane appear in the image plane (light points map to light, dark to dark).

the horizon, the ray will hit the plane in the z > 0 half space and so we can see the
plane. If it is on the other side, it will hit the plane in the z < 0 half space, so we
cannot see the plane.



184 Chapter 19 Image Capture

Remember this: Under perspective projection:

• points project to points;

• lines project to lines;

• more distant objects are smaller;

• lines that are parallel in 3D meet in the image;

• planes have horizons;

• planes image as half-planes.

19.1.3 Scaled Orthographic Projection and Orthographic Projection

Under some circumstances, perspective projection can be simplified. Assume the
camera views a set of points which are close to one another compared with the
distance to the camera. Write Xi = (Xi, Yi, Zi) for the i’th point, and assume that
Zi = Z(1+ϵi), where ϵi is quite small. In this case, the distance to the set of points
is much larger than the relief of the points, which is the distance from nearest to
furthest point. The i’th point projects to (fXi/Zi, fYi/Zi), which is approximately
(f(Xi/Z)(1 − ϵi), f(Yi/Z)(1 − ϵi)). Ignoring ϵi because it is small, we have the
projection model

(X,Y, Z)→ (f/Z)(X,Y ) = s(X,Y ).

This model is usually known as scaled orthograpic projection. The model applies
quite often. One important example is pictures of people. Very often, all body
parts are roughly the same distance from the camera — think of a side view of a
pedestrian seen from a motor car. Scaled orthographic projection applies in such
cases. It is not always an appropriate model. For example, when a person is
holding up a hand to block the camera’s view, perspective effects can be significant
(Figure ??).

Occasionally, it is useful to rescale the camera (or assume that f/Z = 1),
yielding (X,Y, Z)→ (X,Y ). This is known as orthographic projection.

Remember this: Scaled orthographic projection maps

(X,Y, Z)→ s(X,Y )

where s is some scale. The model applies when the distance to the points
being viewed is much greater than their relief. Many views of people have
this property.
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FIGURE 19.5: The pedestrian on the left is viewed from some way away, so the dis-
tance to the pedestrian is much larger than the change in depth over the pedestrian.
In this case, which is quite common for views of people, scaled orthography will ap-
ply. The celebrity on the right is holding a hand up to prevent the camera viewing
their face; the hand is quite close to the camera, and the body is an armslength
away. In this case, perspective effects are strong. The hand looks big because it is
close, and the head looks small because it is far.

19.1.4 Lenses

One practical version of a pinhole camera is a camera obscura – the box is built as
a room, and you can stand in the room and see the view on the back wall (some ex-
amples are at https://www.atlasobscura.com/lists/camera-obscura-places;
the internet yields amusing disputes about the correct plural form of the term).
You can also build a simple pinhole camera with a matchbox, some tape, a pin, and
some light sensitive film do the trick. Getting good images takes trouble, however.

A large hole in front of the camera will cause the image at the back to be
brighter, but blurrier, because each point on the sensor will average light over all
directions that happen to go through the hole. If the hole is smaller, the image will
get sharper, but darker. In practical cameras, achieving an image that is both bright
and focused is the job of the lens system. There may be one or several lenses that
light passes through before reaching the sensor at the back of the camera. Each of
these lenses is built from refracting materials. The shape and position of the lenses,
together with the refractive index of the materials they are built of, determine the
path that light follows through the lens system. Generally, the lens system is
designed to collect as much light as possible at the input and produce a focused
image on the image plane. Remarkably, the many or most lens systems result
in an imaging geometry that can be modelled with a pinhole camera model, and
lens system effects are ignored in all but quite specialized applications of computer
vision.

Lens systems are designed and modelled using geometric optics, but lens de-
signs always involve compromises. The result is that cameras with lenses differ
from pinhole cameras in some ways that are worth knowing about, although they
are not always important. First, in an abstract pinhole camera, all objects at what-
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ever distance are in focus. Geometric optics means that a lens with this property
admits very little light, so it is common to work with cameras that have a limited
depth of field – the range of distances to the camera over which objects are in fo-
cus on the image plane. Second, manufacturing difficulties and cost considerations
mean that lenses will have various aberrations. The net effect of most aberrations
is a tendency to defocus some objects under some circumstances, but chromatic
aberrations can cause colors to be less crisp and objects to have “halos” of color.
Chromatic aberration occurs because light of different wavelengths takes slightly
different paths through a refracting object. Various lens coatings can correct chro-
matic aberration, but the resulting lens system will be more expensive. Third, in
most lens systems, the periphery of the image tends to be brighter than it would
be in a pure pinhole camera. For more complex lens systems, an effect in the lens
known as vignetting can darken the periphery somewhat. Finally, lenses may cause
geometric distortions of the image. The most noticeable effect of these distortions
is that straight lines in the world may project to curves in the image. Most com-
mon is barrel distortion, where a square is imaged as a bulging barrel; pincushion
distortion, where the square bulges in rather than out, can occur (Figure ??).

Neutral grid Barrel distortion Pincushion distortion

FIGURE 19.6: On the left a neutral grid observed in a non-distorting lens (and
viewed frontally to prevent any perspective distortion). Center shows the same
grid, viewed in a lens that produces barrel distortion. Right, the same grid, now
viewed in a lens that produces pincushion distortion.

19.2 DEPTH MEASUREMENT

The cameras of chapter 35.2 project points in 3D to points on an image plane.
Building such cameras is now very well understood (and they are extremely cheap).
A lot is known about how to recover the points in 3D from the projected versions
under various circumstances (some of this appears in chapters 35.2), but doing so
can be inconvenient. It is often very useful to measure the 3D location of points
directly.

19.2.1 Stereoscopic Depth Measurement

Stereo uses two cameras somewhat offset from one another. Figure 35.2 sketches
this idea. The key is that if you know where the cameras are with respect to
one another, and where a 3D point projects to in each of two perspective images,
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simple trigonometry will reveal where it is in 3D. Calibrating the relative geometry
of the cameras is now well understood (Chapter 35.2), as is determining which (if
any) point in the first image corresponds to which in the second (Chapter 35.2), and
recovering a good depth model from this information (Chapter 35.2). Stereo rigs can
be very cheap and accurate, and they have the great advantage that measurement
is passive – one does not have to send signals into the environment.
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FIGURE 19.7: When two pinhole cameras view a point, the 3D coordinates of the
point can be reconstructed from the two images of that point. This applies for almost
every configurations of the cameras. It is an elementary exercise in trigonometry
(exercises) to determine P from the positions of the two focal points, the locations
of the point in the two images, and the distance between the focal points. Consid-
erable work can be required to find appropriate matching points, but the procedures
required are now extremely well understood (Chapters 35.2). One can now buy
camera systems that use this approach to report 3D point locations (often known as
RGBD cameras). Here we show a specialized camera geometry, chosen to simplify
notation. The second camera is translated with respect to the first, along a direction
parallel to the image plane. The second camera is a copy of the first camera, so the
image planes are parallel. In this geometry, the point being viewed shifts somewhat
to the left in the right camera.

But there are limits to stereopsis. Measuring large depths with two cameras
that are close together requires highly accurate estimates of point positions in im-
ages. Figure 19.7 shows a simple geometry that illustrates the problem. The point
P projects to x1 in camera 1, and to x2 in camera 2. Notice because of the carefully
chosen camera geometry, the y-coordinates of x1 and x2 are the same; only the x-
coordinates differ. Write x1 for the x-coordinate of x1; X for the x-coordinate of
P , and so on. From the triangles in that figure, we have

d = x2 − x1 = f
(X −B)−X

Z
= −f B

Z

meaning that as P gets further away, the disparity (difference between projected
positions in left and right cameras) gets smaller, and so gets harder to measure.
Resolving small differences in large depths is going to be hard. This means that
either the baseline (distance between camera focal points, B in Figure 35.2) is large
(and so the equipment is bulky) or one can’t reliably measure large depths.
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FIGURE 19.8: Right: shows two important triangles in the plane spanned by the
two focal points (f1, f2) and the point being viewed (P). The extent of the shift
leftwards (the disparity, d in the figure) reveals the depth to the point. Comparing
triangle f1, p, R with triangle f2, p, R yields the relationship between depth,
disparity and baseline (the distance between the two focal points.

A second important limit is that some points will appear in one camera, but
not in the other (an effect known as Da Vinci stereopsis, illustrated in Figure 19.9),
and so their depth cannot be measured by stereo. The result is quite characteristic
“holes” in depth maps obtained from stereo cameras .

19.2.2 Camera-Projector Stereo

The key difficulty in stereo is establishing which point in the left image corresponds
to which in the right. This can be tricky even now for some kinds of object.
One could use one camera and one projector. This projector is constructed to have
geometry like that of a camera. Light leaves an analog of the focal point, and travels
along rays through pixel locations. Modulation tricks mean the light through each
different pixel location is uniquely identifiable. The geometry of Figure 19.7 still
applies, but now the ray from f1 to P is a ray of emitted light.

A natural modulation trick is for the projector to display a sequence of (say)
8 patterns. Each pixel in each pattern is either dark or light. If the patterns are
properly chosen, and if the camera observes all of them, you can think of each ray
through the projector focal point as being tagged with eight bits. These eight bits
identify the ray. Many rays will have the same bit pattern. If depth limits are
known for the scene, and if the patterns are appropriately chosen, this ambiguity
is not important.

For any baseline, there will be some practical limit to the largest and smallest
depths that can be measured. This has an interesting consequence. In the geometry
of Figure 19.7, imagine we fire a ray of modulated light from f1 through x1. If it
is observed in camera 2 (it might not be, because the geometry of Figure 19.9 also
still applies), we have a very good idea where it will be observed. The y-coordinate
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will not have changed and the disparity is limited by the depth range. This means
we can use the same code for rays through two different points in camera 1 as long
as they are sufficiently far apart.

Camera projector stereo uses the same geometry as two camera stereo, so
that large depths are hard to measure without large baselines, and there will still
be holes in depth maps.

19.2.3 Structured light

Structured light uses

19.2.4 Time of flight sensors and Lidar

could fire light out from a location, then wait till it returns. The length of the wait
and the speed of light reveal the depth to the point (Figure 35.2).

PROBLEMS

19.1. Use Figure 35.2, and write B for the distance between fL and fR and vL for
the unit vector between fL and XL.
(a) Show that the point

P = fL + vL

 B

cos θL + cos θR

(
sin θL
sin θR

)


(b) Show that the point

P = fR + vR

 B

cos θR + cos θL

(
sin θR
sin θL

)


(c) Under what circumstances could these two expressions produce different
results? (hint: fL, fR, XL, XR and P are coplanar, but what happens if
XL and XR are measured with small errors?)
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FIGURE 19.9: Top shows two pinhole cameras viewing a rectangular depression in
a flat surface. As the images show, camera on the left can see the right wall,
and that on the right can see the left wall. This means that these walls cannot be
reconstructed directly using trigonometry, and so the depth map will have holes in
it. The depth map here is shown with a fairly common convention, where nearer
surfaces are lighter, farther surfaces are darker, and holes are “infinitely far away”.


