
C H A P T E R 21

Color Phenomena

The light receptors in cameras and in the eye respond more or less strongly to
different wavelengths of light. Most cameras and most eyes have several different
types of receptor, whose sensitivity to different wavelengths varies. Comparing
the response of several types of sensor yields information about the distribution
of energy with wavelength for the incoming light; this is color information. Color
information can be used to remove shadows. The color of an object seen in an
image depends on how the object was lit, but there are algorithms that can correct
for this effect.

21.1 HUMAN COLOR PERCEPTION

The light coming out of sources or reflected from surfaces has more or less energy
at different wavelengths, depending on the processes that produced the light. This
distribution of energy with wavelength is sometimes called a spectral energy density;
Figure 21.1 shows spectral energy densities for sunlight measured under a variety of
different conditions. The visual system responds to light in a range of wavelengths
from approximately 400nm to approximately 700nm. Light containing energy at
just one wavelength looks deeply colored (these colors are known as spectral colors).
The colors seen at different wavelengths have a set of conventional names, which
originate with Isaac Newton (the sequence from 700nm to 400nm goes Red Or-
ange Yellow Green Blue Indigo Violet, or Richard of York got blisters in Venice,
although indigo is now frowned upon as a name because people typically cannot
distinguish indigo from blue or violet). If the intensity is relatively uniform across
the wavelengths, the light will look white.

Different kinds of color receptor in the human eye respond more or less
strongly to light at different wavelengths, producing a signal that is interpreted
as color by the human vision system. The precise interpretation of a particular
light is a complex function of context; illumination, memory, object identity, and
emotion can all play a part. The simplest question is to understand which spectral
energy densities produce the same response from people under simple viewing con-
ditions (Section 21.1.1). This yields a simple, linear theory of color matching that
is accurate and extremely useful for describing colors. We sketch the mechanisms
underlying the transduction of color in Section 21.1.2.

21.1.1 Color Matching

The simplest case of color perception is obtained when only two colors are in view
on a black background. In a typical experiment, a subject sees a colored light—the
test light—in one half of a split field (Figure 21.2). The subject can then adjust
a mixture of lights in the other half to get it to match. The adjustments involve
changing the intensity of some fixed number of primaries in the mixture.
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FIGURE 21.1: Daylight has different amounts of power at different wavelengths.
These plots show the spectral energy density of daylight measured at different
times of day and under different conditions. The figure plots relative power
against wavelength for wavelengths from 400 nm to 700 nm for a series of
seven different daylight measurements, made by Jussi Parkkinen and Pertti Sil-
fsten, of daylight illuminating a sample of barium sulphate (which gives a high
reflectance white surface). At the foot of the plot, we show the names used
for spectral colors of the relevant wavelengths. Plot from data obtainable at
http://www.it.lut.fi/ip/research/color/database/database.html.

Write T for the test light, an equals sign for a match, the weights—which are
non-negative—as wi, and the primaries Pi. A match can then be written in an
algebraic form as

T = w1P1 + w2P2 + . . . ,

meaning that test light T matches the particular mixture of primaries given by
(w1, w2, . . .). The situation is simplified if subtractive matching is allowed. In
subtractive matching, the viewer can add some amount of some primaries to the
test light instead of to the match. This can be written in algebraic form by allowing
the weights in the expression above to be negative.

Under these conditions, most observers require only three primaries to match
a test light. This phenomenon is known as the principle of trichromacy. However,
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FIGURE 21.2: Human perception of color can be studied by asking observers to mix
colored lights to match a test light shown in a split field. The drawing shows the
outline of such an experiment. The observer sees a test light T and can adjust the
amount of each of three primaries in a mixture displayed next to the test light. The
observer is asked to adjust the amounts so that the mixture looks the same as the
test light. The mixture of primaries can be written as w1P1 + w2P2 + w3P3; if
the mixture matches the test light, then we write T = w1P1 + w2P2 + w3P3. It is
a remarkable fact that for most people three primaries are sufficient to achieve a
match for many colors, and three primaries are sufficient for all colors if we allow
subtractive matching (i.e., some amount of some of the primaries is mixed with the
test light to achieve a match). Some people require fewer primaries. Furthermore,
most people choose the same mixture weights to match a given test light.

there are some caveats. First, subtractive matching must be allowed; second, the
primaries must be independent, meaning that no mixture of two of the primaries
may match a third. There is now clear evidence that trichromacy occurs because
there are three distinct types of color transducer in the eye [?, ?]. Given the same
primaries and test light, most observers select the same mixture of primaries to
match that test light, because most people have the same types of color receptor.

Matching is (to an accurate approximation) linear. This yields Grassman’s
laws. First, if we mix two test lights, then mixing the matches will match the
result. Second, if two test lights can be matched with the same set of weights, then
they will match each other. Finally, matching is linear: a test light with doubled
intensity is matched by doubling the weights.

Given the same test light and set of primaries, most people use the same set of
weights to match the test light. This, trichromacy, and Grassman’s laws are about
as true as any law covering biological systems can be. The exceptions include the
following:

• people with too few kinds of color receptor as a result of genetic ill fortune
(who may be able to match everything with fewer primaries);

• people with neural problems (who may display all sorts of effects, including
a complete absence of the sensation of color);

• some elderly people (whose choice of weights differ from the norm because of
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the development of macular pigment in the eye);

• very bright lights (whose hue and saturation look different from less bright
versions of the same light);

• and very dark conditions (where the mechanism of color transduction is some-
what different than in brighter conditions).

21.1.2 Color Receptors

Human retinas contain two types of cell that are sensitive to light, differentiated
by their shape. The light-sensitive region of a cone has a roughly conical shape,
whereas that in a rod is roughly cylindrical. Cones largely dominate color vision.
Cones are somewhat less sensitive to light than rods are, meaning that in low light,
color vision is poor.

Trichromacy occurs because there are (usually!) three distinct types of cone
in the eye that mediate color perception. Each of these types turns incident light
into neural signals. The principle of univariance states that the activity of these
cones is of one kind (i.e., they respond strongly or weakly, but do not signal the
wavelength of the light falling on them). Univariance is a powerful idea because it
gives us a good and simple model of human reaction to colored light: two lights will
match if they produce the same receptor responses, whatever their spectral energy
densities.

Write pk for the response of the kth type of receptor, σk(λ) for its sensitivity,
E(λ) for the light arriving at the receptor, and Λ for the range of visible wavelengths.
We can obtain the overall response of a receptor by adding up the response to each
separate wavelength in the incoming spectrum so that

pk =

∫
Λ

σk(λ)E(λ)dλ.

Comparing color matching data for normal observers and those lacking one
cone type yields the sensitivities of the three different kinds of cone to different
wavelengths (Figure 21.3). The three types of cone are properly called S cones,
M cones, and L cones (for their peak sensitivity being to short-, medium-, and
long-wavelength light, respectively).

21.2 THE PHYSICS OF COLOR

Light sources can produce different amounts of light at different wavelengths, so
incandescent lights look orange or yellow, and fluorescent lights look bluish. For
most diffuse surfaces, albedo depends on wavelength, so that some wavelengths may
be largely absorbed and others largely reflected. This means that most surfaces will
look colored when lit by a white light. The light reflected from a colored surface
is affected by both the color of the light falling on the surface, and by the surface.
For example, a white surface lit by red light will reflect red light, and a red surface
lit by white light will also reflect red light.
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FIGURE 21.3: There are three types of color receptor in the human eye, usually
called cones. These receptors respond to all photons in the same way, but in dif-
ferent amounts. The figure shows the log of the relative spectral sensitivities of
the three kinds of color receptor in the human eye, plotted against wavelength. On
the wavelength axis, we have shown the color name usually associated with lights
which contain energy only at that wavelength. The first two receptors—properly
named the long- and medium-wavelength receptors—have peak sensitivities at quite
similar wavelengths. The third receptor (short-wavelength receptor) has a different
peak sensitivity. The response of a receptor to incoming light can be obtained by
summing the product of the sensitivity and the spectral energy density of the light
over all wavelengths. Notice that each receptor responds to quite a broad range of
wavelengths. This means that human observers must perceive color by comparing
the response of the receptors to one another, and that there must be many spectral
energy densities that cannot be distinguished by humans. Figures plotted from data
disseminated by the Color and Vision Research Laboratories database, compiled by
Andrew Stockman and Lindsey Sharpe, and available at http://www.cvrl.org/.

21.2.1 The Color of Light Sources

A patch of surface outdoors during the day is illuminated both by light that comes
directly from the sun—usually called daylight—and by light from the sun that has
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been scattered by the air (sometimes called skylight or airlight; the presence of
clouds or snow can add other, important, phenomena). The color of daylight varies
with time of day (Figure 21.1) and time of year.
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FIGURE 21.4: There is a variety of illuminant models; the graph shows the relative
spectral power distribution of two standard CIE models, illuminant A—which models
the light from a 100W Tungsten filament light bulb, with color temperature 2800K—
and illuminant D-65—which models daylight. Figure plotted from data available at
http://www.cvrl.org/.

For clear air, the intensity of radiation scattered by a unit volume depends on
the fourth power of the frequency; this means that light of a long wavelength can
travel much farther before being scattered than light of a short wavelength (this is
known as Rayleigh scattering). This means that, when the sun is high in the sky,
blue light is scattered out of the ray from the sun to the earth—meaning that the
sun looks yellow—and can scatter from the sky into the eye—meaning that the sky
looks blue. There are standard models of the spectral energy density of the sky
at different times of day and latitude. Surprising effects occur when there are fine
particles of dust in the sky (the larger particles cause much more complex scattering
effects, usually modeled rather roughly by the Mie scattering model, described in
? or in ?).

Artificial Illumination

Typical artificial light sources are commonly of a small number of types:

• An incandescent light contains a metal filament that is heated to a high tem-
perature. The spectrum roughly follows the black-body law (Section 21.2.1),
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but the melting temperature of the element limits the color temperature of
the light source, so the light has a reddish tinge.

• A fluorescent light works by generating high-speed electrons that strike gas
within the bulb. The gas releases ultraviolet radiation, which causes phos-
phors coating the inside of the bulb to fluoresce. Typically the coating consists
of three or four phosphors, which fluoresce in quite narrow ranges of wave-
lengths. Most fluorescent bulbs generate light with a bluish tinge, but some
bulbs mimic natural daylight (Figure 21.5).

• In some bulbs, an arc is struck in an atmosphere consisting of gaseous met-
als and inert gases. Light is produced by electrons in metal atoms dropping
from an excited state to a lower energy state. Typical of such lamps is strong
radiation at a small number of wavelengths, which correspond to particular
state transitions. The most common cases are sodium arc lamps and mercury
arc lamps. Sodium arc lamps produce a yellow-orange light extremely effi-
ciently and are quite commonly used for freeway lighting. Mercury arc lamps
produce a blue-white light and are often used for security lighting.

• TODO: LED lights

Figure 21.5 shows a sample of spectra from different light bulbs.

Black Body Radiators
One useful abstraction is the black body, a body that reflects no light. A

heated black body emits electromagnetic radiation. The spectral power distribution
of this radiation depends only on the temperature of the body. If we write T for
the temperature of the body in Kelvins, h for Planck’s constant, k for Boltzmann’s
constant, c for the speed of light, and λ for the wavelength, we have

E(λ) ∝ 1

λ5
1

(exp(hc/kλT )− 1)
.

This means that there is one parameter family of light colors corresponding to
black body radiators—the parameter being the temperature—and so we can talk
about the color temperature of a light source. This is the temperature of the black
body that looks most similar. At relatively low temperatures, black bodies are red,
passing through orange to a pale yellow-white to white as the temperature increases
(Figure 21.10 shows this locus). When hc≫ kλT , we have 1/(exp(hc/kλT )− 1) ≈
exp(−hc/kλT ), so

E(λ;T ) = C
exp(−hc/kλT )

λ5

where C is the constant of proportionality; this model is somewhat easier to use
than the exact model (Section 22.2.1).

21.2.2 The Color of Surfaces

The color of surfaces is a result of a large variety of mechanisms, including differen-
tial absorbtion at different wavelengths, refraction, diffraction, and bulk scattering
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FIGURE 21.5: The relative spectral power distribution of four different lamps
from the Mitsubishi Electric Corporation. Note the bright, narrow bands
that come from the flourescing phosphors in the fluorescent lamp. The fig-
ure was plotted from data made available by the Coloring Info Pages at
http://www.colorpro.com/info/data/lamps.html; the data was measured by
Hiroaki Sugiura.

(for more details, see, for example ?, ?, ?, or ?). We can model surfaces as having
a diffuse and a specular component, each of which has a wavelength-dependent
albedo. The wavelength-dependent diffuse albedo is sometimes referred to as the
spectral reflectance (sometimes abbreviated to reflectance or, less commonly, spec-
tral albedo). Figures 21.6 and 21.7 show examples of spectral reflectances for a
number of different natural objects.

There are two color regimes for specular reflection. If the surface is dielectric
(i.e., does not conduct electricity), specularly reflected light tends to take the color
of the light source. If the surface is a conductor, the specular albedo may depend
quite strongly on wavelength, so that white light may result in colored specularities.

21.3 REPRESENTING COLOR

Describing colors accurately is a matter of great commercial importance. Many
products are closely associated with specific colors—for example, the golden arches,
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FIGURE 21.6: Spectral albedoes for a variety of natural surfaces measured by Esa
Koivisto, Department of Physics, University of Kuopio, Finland, plotted against
wavelength in nanometers. These figures were plotted from data available at
http://www.it.lut.fi/ip/research/color/database/database.html.

the color of various popular computers, and the color of photographic film boxes—
and manufacturers are willing to go to a great deal of trouble to ensure that differ-
ent batches have the same color. This requires a standard system for talking about
color. Simple color names are insufficient because relatively few people know many
color names, and most people are willing to associate a large variety of colors with
a given name. There are many linear and non-linear color spaces (? is a good refer-
ence). Generally, the choice of color space is driven by application. One important
consideration is that, some color representations are more redundant than others.
For example, the R, G and B layers in an RGB image are typically very similar,
but a linear transformation can decorrelate these layers quite well (exercises). Re-
dundancy is obviously a nuisance if one wishes to compress images. It is also a
nuisance if one wishes to synthesize images, because the synthesis process must
produce layers that are very, but not exactly, like each other. Another important
consideration is consistency with perception. In some color spaces a small change
in coordinates can result in a large change in perceived color. This is a problem if
one wishes to control errors in color, for example, when mapping or synthesizing
colors.
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FIGURE 21.7: Spectral albedoes for a variety of natural surfaces measured by Esa
Koivisto, Department of Physics, University of Kuopio, Finland, plotted against
wavelength in nanometers. These figures were plotted from data available at
http://www.it.lut.fi/ip/research/color/database/database.html.

21.3.1 Additive Linear Color Spaces

There is a natural mechanism for representing color: agree on a standard set of
primaries, and then describe any colored light by the three values of weights that
people would use to match the light using those primaries. This approach extends
to give a representation for surface colors as well if we use a standard light for
illuminating the surface (and if the surfaces are equally clean, etc.). Performing a
matching experiment each time we wish to describe a color can be practical (paint
stores will mix paint to match a flake, for example), but a simpler procedure is
available.

A linear color space is defined by a choice of primaries P1, P2, and P3. These
may not be physically realizable. One then obtains a set of color matching functions
from the primaries by experiment. The color matching functions f1(λ), f2(λ), and
f3(λ) have the property that, if a source S(λ) is matched by w1P1 +w2P2 +w3P3,
then

wi =

∫
fi(λ)S(λ)dλ.

There is a form of duality between primaries and color matching functions, so one
can obtain a linear color space by constructing the color matching functions and
then looking for primaries that produce these color matching functions. A variety of
different systems have been standardized by the CIE (the commission international
d’éclairage, which exists to create standards for such things).
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The CIE XYZ color space is one quite popular standard. The color matching
functions were chosen to be everywhere positive, so that the coordinates of any
real light are always positive. It is not possible to obtain CIE X, Y, or Z primaries
because for some wavelengths the value of their pectral energy density is negative.
However, given color matching functions alone, one can specify the XYZ coordinates
of a color and hence describe it.

Linear color spaces allow a number of useful graphical constructions that are
more difficult to draw in three dimensions than in two, so it is common to intersect
the XYZ space with the plane X + Y + Z = 1 (as shown in Figure 21.8) and draw
the resulting figure using coordinates

(x, y) =

(
X

X + Y + Z
,

Y

X + Y + Z

)
.

This space, which is often referred to as the CIE xy color space is shown in Fig-
ure 21.10. CIE xy is widely used in vision and graphics textbooks and in some
applications, but is usually regarded by professional colorimetrists as out of date.
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FIGURE 21.8: The volume of all visible colors in the CIE XYZ coordinate space is
a cone whose vertex is at the origin. Usually it is easier to suppress the brightness
of a color, which we can do because, to a good approximation, perception of color
is linear, and we do this by intersecting the cone with the plane X + Y + Z = 1 to
get the CIE xy space shown in Figure 21.10.

The RGB color space is a linear color space that formally uses single wave-
length primaries (645.16 nm for R, 526.32 nm for G, and 444.44 nm for B; see
Figure ??). Informally, RGB uses whatever phosphors a monitor has as primaries.
Available colors are usually represented as a unit cube—usually called the RGB
cube—whose edges represent the R, G, and B weights. The cube is drawn in Fig-
ure 21.11.

The opponent color space is a linear color space derived from RGB. There
is evidence that there are three kinds of color system in primates (e.g., see ?; ?).
The oldest responds to intensity (i.e., light-dark comparisons). A more recent, but
still old, color system compares blue with yellow. The most recent color system
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FIGURE 21.9: The figure shows a constant brightness section of the standard 1931
standard CIE xy color space, with color names marked on the diagram. Generally,
colors that lie farther away from the neutral point are more saturated—the difference
between deep red and pale pink—and hue—the difference between green and red—as
one moves around the neutral point.

compares red with green. In some applications, it is useful to use a comparable
representation. This can be obtained from RGB coordinates using I = (R+G+B)/3
for intensity, (B − (R+G)/2)/I for the blue-yellow comparison (sometimes called
B-Y), and (R−G)/I for the red-green comparison (sometimes called R-G). Notice
that B-Y (resp. R-G) is positive for strongly blue (resp. red) colors and negative
for strongly yellow (resp. green) colors, and is intensity independent.

There are two useful constructions that work in linear color spaces, but are
most commonly applied in CIE xy. First, because the color spaces are linear, and
color matching is linear, all colors that can be obtained by mixing two primaries
A and B lie on the line segment joining them plotted on the color space. Second,
all colors that can be obtained by mixing three primaries A, B, and C lie in the
triangle formed by the three primaries plotted on the color space. Typically, we
use this construction to determine the set of colors (or gamut) that a set of monitor
phosphors can display.
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FIGURE 21.10: The figure shows a constant brightness section of the standard 1931
standard CIE xy color space. This space has two coordinate axes. The curved
boundary of the figure is often known as the spectral locus; it represents the colors
experienced when lights of a single wavelength are viewed. The figure shows a locus
of colors due to black-body radiators at different temperatures and a locus of different
sky colors. Near the center of the diagram is the neutral point, the color whose
weights are equal for all three primaries. CIE selected the primaries so that this
light appears achromatic. Generally, colors that lie farther away from the neutral
point are more saturated—the difference between deep red and pale pink—and hue—
the difference between green and red—as one moves around the neutral point.

21.3.2 Subtractive Mixing and Inks

Intuition from one’s finger-painting days suggests that the primary colors should
be red, yellow, and blue, and that yellow and blue mix to make green. The reason
this intuition doesn’t apply to monitors is that paints involve pigments—which mix
subtractively—rather than lights. Pigments can behave in quite complex ways,
but the simplest model is that pigments remove color from incident light, which
is reflected from paper. Thus, red ink is really a dye that absorbs green and blue
light—incident red light passes through this dye and is reflected from the paper.
This is subtractive color mixing.

Color spaces for this kind of mixing can be quite complicated. In the simplest
case, mixing is linear (or reasonably close to linear), and the CMY space applies.
In this space, there are three primaries: cyan (a blue-green color), magenta (a
purplish color), and yellow. These primaries should be thought of as subtracting
a light primary from white light; cyan is W −R (white− red); magenta is W −G
(white − green), and yellow is W − B (white − blue). Now the appearance of
mixtures can be evaluated by reference to the RGB color space. For example, cyan
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and magenta mixed give

(W −R) + (W −G) = R+G+B −R−G = B,

that is, blue. Notice that W +W = W because we assume that ink cannot cause
paper to reflect more light than it does when uninked. Practical printing devices
use at least four inks (cyan, magenta, yellow, and black) because mixing color inks
leads to a poor black, it is difficult to ensure good enough registration between
the three color inks to avoid colored haloes around text, and color inks tend to be
more expensive than black inks. One reason that fingerpainting is hard is that the
color resulting from mixing paints can be quite hard to predict. This is because the
outcome depends very strongly on details such as the specific pigment in the paint,
the size of pigment particles, the medium in which the pigment is suspended, the
care put into stirring the mixture, and similar parameters; usually, we do not have
enough detailed information to use a full physical model of these effects. A useful
study of this difficult topic is [?].

21.3.3 Non-linear Color Spaces

The coordinates of a color in a linear space may not necessarily encode properties
that are common in language or are important in applications. Useful color terms
include: hue, the property of a color that varies in passing from red to green;
saturation, the property of a color that varies in passing from red to pink; and
brightness (sometimes called lightness or value, the property that varies in passing
from black to white. Another difficulty with linear color spaces is that the individual
coordinates do not capture human intuitions about the topology of colors; it is a
common intuition that hues form a circle, in the sense that hue changes from red
through orange to yellow, and then green, and from there to cyan, blue, purple,
and then red again. Another way to think of this is to picture local hue relations:
red is next to purple and orange; orange is next to red and yellow; yellow is next
to orange and green; green is next to yellow and cyan; cyan is next to green and
blue; blue is next to cyan and purple; and purple is next to blue and red. Each of
these local relations works, and globally they can be modeled by laying hues out
in a circle. This means that no individual coordinate of a linear color space can
model hue, because that coordinate has a maximum value that is far away from
the minimum value.

Applying a non-linear transformation to the RGB space can produce a color
space that respects these relations. The HSV space (for hue, saturation, and value),
is obtained by looking down the center axis of the RGB cube. Because RGB is a
linear space, brightness—called value in HSV—varies with scale out from the origin.
We can flatten the RGB cube to get a 2D space of constant value and for neatness
deform it to be a hexagon. This gets the structure shown in Figure 21.11, where
hue is given by an angle that changes as one goes round the neutral point and
saturation changes as one moves away from the neutral point.

In some applications, it is important to know whether a color difference would
be noticeable to a human viewer. One can determine just noticeable differences by
modifying a color shown to observers until they can only just tell it has changed
in a comparison with the original color. With an appropriate choice of non-linear
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FIGURE 21.11: On the left, we see the RGB cube; this is the space of all colors that
can be obtained by combining three primaries (R, G, and B—usually defined by the
color response of a monitor) with weights between zero and one. It is common to
view this cube along its neutral axis—the axis from the origin to the point (1, 1,
1)—to see a hexagon. This hexagon codes hue (the property that changes as a color
is changed from green to red) as an angle, which is intuitively satisfying. On the
right, we see a cone obtained from this cross-section, where the distance along a
generator of the cone gives the value (or brightness) of the color, the angle around
the cone gives the hue, and the distance out gives the saturation of the color.

transformation applied to linear color coordinates, one can find a uniform color
space. In such a space, if the distance in coordinate space is below some threshold,
a human observer would not be able to tell the colors apart.

A uniform space can be obtained from CIE XYZ using a projective transfor-
mation to obtain the CIE u′v′ space CIE u’v’ space. The coordinates are:

(u′, v′) =

(
4X

X + 15Y + 3Z
,

9Y

X + 15Y + 3Z

)
.

Generally, the distance between coordinates in u′, v′ space is a fair indicator of the
significance of the difference between two colors. Of course, this omits differences
in brightness.

CIE LAB is now almost universally the most popular uniform color space.
Coordinates of a color in LAB are obtained as a non-linear mapping of the XYZ
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coordinates:

L∗ = 116

(
Y

Yn

) 1
3

− 16

a∗ = 500

[(
X

Xn

) 1
3

−
(
Y

Yn

) 1
3

]

b∗ = 200

[(
Y

Yn

) 1
3

−
(
Z

Zn

) 1
3

]

Here Xn, Yn, and Zn are the X, Y , and Z coordinates of a reference white patch.
The reason to care about the LAB space is that it is substantially uniform. In
some problems, it is important to understand how different two colors will look to
a human observer, and differences in LAB coordinates give a good guide.
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Using Color Models

22.1 A MODEL OF IMAGE COLOR

Assume that an image pixel is the image of some surface patch. Many phenom-
ena affect the color of this pixel. The main effects are: the camera response to
illumination; the choice of camera receptors; the amount of light that arrives at
the surface; the color of light arriving at the surface; the dependence of the diffuse
albedo on wavelength; and specular components. We have already dealt with the
camera response (Section 20.2.1) and we will assume that the camera is linear, or
has been radiometrically calibrated. A quite simple model can be used to separate
the other effects.

Assume that the surfaces that we are dealing with can be described by the
diffuse+specular model. Write x for a point, λ for wavelength, E(x, λ) for the
spectral energy density of the light leaving a surface, ρ(x, λ) for the albedo of a
surface as a function of wavelength and position, Sd(x, λ) for the spectral energy
density of the light source (which may vary with position; for example, the intensity
might change), and Si(x, λ) for the spectral energy density of interreflected light.
Then we have that:

E(x, λ) = [diffuse term] + (specular term)

= [(direct term) + (interreflected term)] + (specular term)

= (ρ(x, λ)(geometric term))[(Sd(x, λ) + Si(x, λ))] + (specular term).

The geometric terms represent how intensity is affected by surface normal. Notice
that the diffuse term is affected both by the color of the surface and by the color
of the light (examples in Figures 22.1 and 22.2).

Because the camera is linear, the pixel value at x is a sum of terms corre-
sponding to each of the terms in E(x⃗, λ). Write d(x) for the color taken by a flat
patch facing the light source at x with the same albedo as the actual patch there,
g(x) for a geometric term (explained below), i(x) for the contribution of the inter-
reflected term, s(x) for the unit intensity color of the specular term, and gs(x) for
a geometric term (explained below). Then we have:

C(x) = [(direct term) + (interreflected term)] + (specular term)

= gd(x)d(x) + i(x) + gs(x)s(x).

Generally, to work with this model, we ignore i(x); we identify and remove spec-
ularities, using the methods of Section ??, and so assume that C(x) = gd(x)d(x).

225
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FIGURE 22.1: Light sources can have quite widely varying colors. This figure shows
the color of the four light sources of Figure 21.5, compared with the color of a
uniform spectral power distribution, plotted in CIE x, y coordinates.

22.1.1 The Diffuse Term

There are two diffuse components. One, i(x), is due to interreflections. Interreflec-
tions can be a significant source of colored light. If a large colored surface reflects
light onto another surface, that surface’s color can change quite substantially. This
is an effect that people find hard to see, but which is usually fairly easy to spot in
photographs. There are no successful models for removing these color shifts, most
likely because they can be very hard to predict. This is because many different
surface reflectances can have the same color, so that two surfaces with the same
color (but different reflectances) can have quite differently colored interreflections.
The interreflection term is often small, and usually is simply ignored.

Ignoring the interreflected component, the diffuse term is

gd(x)d(x).

Here d(x) is the image color of an equivalent flat surface facing the light source and
viewed under the same light. The geometric term, gd(x), varies relatively slowly
over space and accounts for the change in brightness due to the orientation of the
surface.

We can model the dependence of d(x) on the light and on the surface by
assuming we are viewing flat, diffuse surfaces, illuminated from infinitely far behind
the camera. In this case, there will be no effects due to specularities or to surface
orientation. The color of light arriving at the camera will be determined by two
factors: first, the wavelength-dependent albedo of the surface that the light is
leaving; and second, the wavelength-dependent intensity of the light falling on that
surface. If a patch of perfectly diffuse surface with diffuse albedo ρ(λ) is illuminated
by a light whose spectrum is S(λ), the spectrum of the reflected light is ρ(λ)S(λ).
Assume the camera has linear photoreceptors, and the k’th type of photoreceptor
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FIGURE 22.2: The color of a light source affects the color of surfaces lit by the source.
The different colors obtained by lighting the violet flower of Figure 21.6 (left) and
the orange flower of Figure 21.6 (right) with the four light sources of Figure 21.5.

has sensitivity σk(λ). If a linear photoreceptor of the kth type sees this surface
patch, its response is:

pk =

∫
Λ

σk(λ)ρ(λ)S(λ)dλ,

where Λ is the range of all relevant wavelengths.

The main engineering parameter here is the photoreceptor sensitivities σk(λ).
For some applications such as shadow removal (Section 22.2.1), it can be quite
helpful to have photoreceptor sensitivities that are “narrow-band” (i.e., the pho-
toreceptors respond to only one wavelength). Usually, the only practical methods
to change the photoreceptor sensitivities are to either put colored filters in front
of the camera or to use a different camera. Using a different camera doesn’t work
particularly well, because manufacturers try to have sensitivities that are reason-
ably compatible with human receptor sensitivities. They do this so that cameras
give about the same responses to colored lights that people do; as a result, cameras
tend to have quite similar receptor sensitivities. There are three ways to proceed:
install narrow-band filters in front of the lens (difficult to do and seldom justified);
apply a transformation to the receptor outputs that makes them behave more like
narrow-band receptors (often helpful, if the necessary data are available, ?;?); or
assume that they are narrow-band receptors and tolerate any errors that result
(generally quite successful).
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22.1.2 The Specular Term

The specular component will have a characteristic color, and its intensity will change
with position. We can model the specular component as

gs(x)s(x),

where s(x) is the unit intensity image color of the specular reflection at that pixel,
and gs(x) is a term that varies from pixel to pixel, and models the amount of energy
specularly reflected. We expect gs(x) to be zero at most points, and large at some
points.

The color s(x) of the specular component depends on the material. Generally,
metal surfaces have a specular component that is wavelength dependent and so
takes on a characteristic color that depends on the metal (gold is yellow, copper
is orange, platinum is white, and osmium is blue or purple). Surfaces that do not
conduct—dielectric surfaces— have a specular component that is independent of
wavelength (e.g., the specularities on a shiny plastic object are the color of the
light). Section ?? describes how these properties can be used to find specularities,
and to find image regions corresponding to metal or plastic objects.

22.2 INFERENCE FROM COLOR

Our color model supports a variety of inferences. Here we show methods to remove
shadows (Section 22.2.1) and to infer surface color (Section 22.2.2).

22.2.1 Shadow Removal Using Color

Lightness methods make the assumption that “fast” edges in images are due to
changes in albedo (Section 20.2.2). This assumption is usable, but fails badly at
shadows, particularly shadows in sunlight outdoors (Figure 22.4), where there can
be a large and fast change of image brightness. People usually are not fooled into
believing that a shadow is a patch of dark surface, so must have some method to
identify shadow edges. Home users often like editing and improving photographs,
and programs that could remove shadows from images would be valuable. A shadow
removal program would work something like a lightness method: find all edges,
identify the shadow edges, remove those, and then integrate to get the picture
back.

There are some cues for finding shadow edges that seem natural, but don’t
work well. One might assume that shadow edges have very large dynamic range
(which albedo edges can’t have; see Section 20.1.1), but this is not always the case.
One might assume that, at a shadow edge, there was a change in brightness but not
in color. It turns out that this is not the case for outdoor shadows, because the lit
region is illuminated by yellowish sunlight, and the shadowed region is illuminated
by bluish light from the sky, or sometimes by interreflected light from buildings,
and so on. However, a really useful cue can be obtained by modelling the different
light sources.

We assume that light sources are black bodies, so that their spectral energy
density is a function of temperature. We assume that surfaces are diffuse. We
use the simplified black-body model of Section 21.2.1, where, writing T for the
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temperature of the body in Kelvins, h for Planck’s constant, k for Boltzmann’s
constant, c for the speed of light, and λ for the wavelength, we have

E(λ;T ) = C
exp(−hc/kλT )

λ5

(C is some constant of proportionality). Now assume that the color receptors each
respond only at one wavelength, which we write λk for the k’th receptor, so that
σk(λ) = δ(λ − λk). If we view a surface with spectral albedo ρ(λ) illuminated by
one of these sources at temperature T , the response of the j’th receptor will be

rj =

∫
σj(λ)ρ(λ)K

exp(−hc/kλT )
λ5

dλ = Kρ(λj)
exp(−hc/kλjT )

λ5j
.

We can form a color space that is very well behaved by taking c1 = log(r1/r3),
c2 = log(r2/r3), because (

c1
c2

)
=

(
a1
a2

)
+

1

T

(
b1
b2

)
where a1 = log ρ(λ1)− log ρ(λ3) + 5 log λ3 − 5 log λ1 and b1 = (hc/k)(1/λ3 − 1/λ1)
(and a2, b2 follow). Notice that, when one changes the color temperature of the
source, the (c1, c2) coordinates move along a straight line. The direction of the
line depends on the sensor, but not on the surface. Call this direction the color
temperature direction. The intercept of the line depends on the surface.

Now consider a world of colored surfaces, and map the image colors to this
space. There is a family of parallel lines in this space, whose direction is the color
temperature direction. Different surfaces may map to different lines. If we change
the color temperature of the illuminant, then each color in this space will move along
the color temperature direction, but colors will not move from line to line. We now
represent a surface color by its line. For example, we could construct a line through
the origin that is perpendicular to color temperature direction, then represent a
surface color by distance along this line (Figure 22.3). We can represent each pixel
in the image in this space, and in this representation the color image becomes a
gray-level image, where the gray level does not change inside shadows (because a
shadow region just has a different color temperature to the non-shadowed region).
? calls this the invariant image. Any edge that appears in the image but not in
the invariant image is a shadow edge, so we can now apply our original formula:
find all edges, identify the shadow edges, remove those, and then integrate to get
the picture back.

Of course, under practical circumstances, usually we do not know enough
about the sensors to evaluate the as and bs that define this family of lines, so we
cannot get the invariant image directly. However, we can infer a direction in (c1, c2)
space that is a good estimate by a form of entropy reasoning. We must choose a
color temperature direction. Assume the world is rich in differently colored surfaces.
Now consider two surfaces S1 and S2. If c1 (the (c1, c2) values for S1) and c2 are
such that c1−c2 is parallel to the color temperature direction, we can choose T1 and
T2 so that S1 viewed under light with color temperature T1 will look the same as
S2 viewed under light with color temperature T2. We expect this to be uncommon,
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FIGURE 22.3: Changing the color temperature of the light under which a surface is
viewed moves the (c1, c2) coordinates of that surface along the color temperature
direction (left; the different gray patches represent the same surface under differ-
ent lights). If we now project the coordinates along the (c1, c2) direction onto some
line, we obtain a value that doesn’t change when the illuminant color temperature
changes. This is the invariant value for that pixel. Generally, we do not know
enough about the imaging system to estimate the color temperature direction. How-
ever, we expect to see many different surfaces in each scene; this suggests that the
right choice of color temperature direction on the right is 1 (where there are many
different types of surface) rather than 2 (where the range of invariant values is
small).

because surfaces tend not to mimic one another in this way. This means we expect
that colors will tend to spread out when we project along a good estimate of the
color temperature direction. A reasonable measure of this spreading out is the
entropy of the histogram of projected colors. We can now estimate the invariant
image, without knowing anything about the sensor. We search directions in (c1, c2)
space, projecting all the image colors along that direction; our estimate of the color
temperature direction is the one where this projection yields the largest entropy.
From this we can compute the invariant image, and so apply our shadow removal
strategy above. In practice, the method works well, though great care is required
with the integration procedure to get the best results (Figure 22.4).

22.2.2 Color Constancy: Surface Color from Image Color

In our model, the image color depends on both light color and on surface color. If
we light a green surface with white light, we get a green image; if we light a white
surface with a green light, we also get a green image. This makes it difficult to
name surface colors from pictures. We would like to have an algorithm that can
take an image, discount the effect of the light, and report the actual color of the
surface being viewed.

This process is called color constancy. Humans have some form of color con-
stancy algorithm. People are often unaware of this, and inexperienced photogra-
phers are sometimes surprised that a scene photographed indoors under fluorescent
lights has a blue cast, whereas the same scene photographed outdoors may have a
warm orange cast. The simple linear models of Section 21.3 can predict the color an
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Invariant image Shadow removed imageImage

FIGURE 22.4: The invariant of the text and of Figure 22.3 does not change value
when a surface is shadowed. Finlayson et al. use this to build a shadow removal
system that works by (a) taking image edges; (b) forming an invariant image; then
(c) using that invariant image to identify shadow edges; and finally (d) integrating
only non-shadow edges to form the result. The results are quite convincing.

observer will perceive when shown an isolated spot of light of a given power spectral
distribution. But if this spot is part of a larger, more complex scene, these models
can give wildly inaccurate predictions. This is because the human color constancy
algorithm uses various forms of scene information to decide what color to report.
Demonstrations by ?, which are illustrated in Figure 22.5, give convincing examples
of this effect. It is surprisingly difficult to predict what colors a human will see in
a complex scene (?; ?; [?]; [?]; [?]). This is one of the many difficulties that make
it hard to produce really good color reproduction systems.

Human color constancy is not perfectly accurate, and people can choose to
disregard information from their color constancy system. As a result, people can
often report:

• the color a surface would have in white light (often called surface color);

• the color of the light arriving at the eye (a useful skill that allows artists to
paint surfaces illuminated by colored lighting); and

• the color of the light falling on the surface.

The model of image color in Section 22.1 is

C(x) = gd(x)d(x) + gs(x)s(x) + i(x).

We decided to ignore the interreflection term i(x). In principle, we could use
the methods of Section ?? to generate new images without specularities. This
brings us to the term gd(x)d(x). Assume that gd(x) is a constant, so we are
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FIGURE 22.5: Land showed an audience a quilt of rectangles of flat colored papers—
since known as a Mondrian for a purported resemblance to the work of that artist—
illuminated using three slide projectors, casting red, green and blue light respectively.
He used a photometer to measure the energy leaving a particular spot in three differ-
ent channels, corresponding to the three classes of receptor in the eye. He recorded
the measurement, and asked the audience to name the patch. Assume the answer
was “red” (on the left). Land then adjusted the slide projectors so that some other
patch reflected light that gave the same photometer measurements, and asked the
audience to name that patch. The reply would describe the patch’s color in white
light—if the patch looked blue in white light, the answer would be “blue” (on the
right). In later versions of this demonstration, Land put wedge-shaped neutral
density filters into the slide projectors so that the color of the light illuminating the
quilt of papers would vary slowly across the quilt. Again, although the photometer
readings vary significantly from one end of a patch to another, the audience sees
the patch as having a constant color.

viewing a flat, frontal surface. The resulting term, d(x), models the world as a
collage of flat, frontal, diffuse colored surfaces. Such worlds are sometimes called
Mondrian worlds, after the painter. Notice that, under our assumptions, d(x)
consists of a set of patches of fixed color. We assume that there is a single illuminant
that has a constant color over the whole image. This term is a conglomeration of
illuminant, receptor, and reflectance information. It is impossible to disentangle
these completely in a realistic world. However, current algorithms can make quite
usable estimates of surface color from image colors given a well-populated world of
colored surfaces and a reasonable illuminant.

Recall from Section 22.1 that if a patch of perfectly diffuse surface with diffuse
spectral reflectance ρ(λ) is illuminated by a light whose spectrum is E(λ), the
spectrum of the reflected light is ρ(λ)E(λ) (multiplied by some constant to do
with surface orientation, which we have already decided to ignore). If a linear
photoreceptor of the kth type sees this surface patch, its response is:

pk =

∫
Λ

σk(λ)ρ(λ)E(λ)dλ,

where Λ is the range of all relevant wavelengths, and σk(λ) is the sensitivity of the
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kth photoreceptor.

Finite-Dimensional Linear Models
This response is linear in the surface reflectance and linear in the illumination,

which suggests using linear models for the families of possible surface reflectances
and illuminants. A finite-dimensional linear model models surface spectral albedoes
and illuminant spectral energy density as a weighted sum of a finite number of basis
functions. We need not use the same bases for reflectances and for illuminants.

If a finite-dimensional linear model of surface reflectance is a reasonable de-
scription of the world, any surface reflectance can be written as

ρ(λ) =

n∑
j=1

rjϕj(λ),

where the ϕj(λ) are the basis functions for the model of reflectance, and the rj
vary from surface to surface. Similarly, if a finite-dimensional linear model of the
illuminant is a reasonable model, any illuminant can be written as

E(λ) =

m∑
i=1

eiψi(λ),

where the ψi(λ) are the basis functions for the model of illumination.
When both models apply, the response of a receptor of the kth type is

pk =

∫
σk(λ)

 n∑
j=1

rjϕj(λ)

( m∑
i=1

eiψi(λ)

)
dλ

=

m,n∑
i=1,j=1

eirj

(∫
σk(λ)ϕj(λ)ψi(λ)

)
dλ

=

m,n∑
i=1,j=1

eirjgijk,

where we expect that the

gijk =

∫
σk(λ)ϕj(λ)ψi(λ)dλ

are known, as they are components of the world model (they can be learned from
observations; see the exercises).

Inferring Surface Color
The finite-dimensional linear model describes the interaction between illumi-

nation color, surface color, and image color. To infer surface color from image color,
we need some sort of assumption. There are several plausible cues that can be used.

Specular reflections at dielectric surfaces have uniform specular albedo. We
could find the specularities with the methods of that section, then recover surface
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color using this information. At a specularity, we have

pk =

∫
σk(λ)

m∑
i=1

eiψi(λ)dλ,

and so if we knew the spectral sensitivities of the sensor and the basis functions ψi,
we could solve for ei by solving a linear system. Now we know all ei, and all pk for
each pixel. We can solve the linear system

pk =

m,n∑
i=1,j=1

eirjgijk

in the unknown rj to recover reflectance coefficients.
Known average reflectance is another plausible cue. In this case, we

assume that the spatial average of reflectance in all scenes is constant and known
(e.g., we might assume that all scenes have a spatial average of reflectance that is
dull gray). In the finite-dimensional basis for reflectance, we can write this average
as

n∑
j=1

rjϕj(λ).

Now if the average reflectance is constant, the average of the receptor responses
must be constant too (if the imaging process is linear; see the discussion), and the
average of the response of the kth receptor can be written as:

pk =

m,n∑
i=1,j=1

eigijkrj .

We know pk and rj , and so have a linear system in the unknown light coefficients
ei. We solve this, and then recover reflectance coefficients at each pixel, as for the
case of specularities. For reasonable choices of reflectors and dimension of light and
surface basis, this linear system will have full rank.

The gamut of a color image is revealing. The gamut is the set of different
colors that appears in the image. Generally, it is difficult to obtain strongly colored
pixels under white light with current imaging systems. Furthermore, if the picture is
taken under strongly colored light, that will tend to bias the gamut. One doesn’t see
bright green pixels in images taken under deep red light, for example. As a result,
the image gamut is a source of information about the illumination. If an image
gamut contains two pixel values—call them p1 and p2—then it must be possible to
take an image under the same illuminant that contains the value tp1+(1− t)p2 for
0 ≤ t ≤ 1 (because we could mix the colorants on the surfaces). This means that
the illuminant information depends on the convex hull of the image gamut. There
are now various methods to exploit these observations. There is usually more than
one illuminant consistent with a given image gamut, and geometric methods can be
used to identify the consistent illuminants. This set can be narrowed down using
probabilistic methods (for example, images contain lots of different colors [?]) or
physical methods (for example, the main sources of illumination are the sun and
the sky, well modelled as black bodies [?]).
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22.3 NOTES

There are a number of important general resources on the use of color. We rec-
ommend ?, ?, ?, ?, ?, ?. ? contains an enormous amount of helpful information.
Recent textbooks with an emphasis on color include ?, ?, ?, ? and ?.

Trichromacy and Color Spaces

Until quite recently, there was no conclusive explanation of why trichromacy ap-
plied, although it was generally believed to be due to the presence of three different
types of color receptor in the eye. Work on the genetics of photoreceptors can be
interpreted as confirming this hunch (see ? and ?), although a full explanation is
still far from clear because this work can also be interpreted as suggesting many
individuals have more than three types of photoreceptor [?].

There is an astonishing number of color spaces and color appearance models
available. The important issue is not in what coordinate system one measures color,
but how one counts the difference, so color metrics may still bear some thought.

Color metrics are an old topic; usually, one fits a metric tensor to MacAdam el-
lipses. The difficulty with this approach is that a metric tensor carries the strong im-
plication that you can measure differences over large ranges by integration, whereas
it is very hard to see large-range color comparisons as meaningful. Another con-
cern is that the weight observers place on a difference in a Maxwellian view and the
semantic significance of a difference in image colors are two very different things.

Specularity Finding

The specularity finding method we describe is due to ?, with improvements due
to ?, [?], and to ?. Specularities can also be detected because they are small and
bright [?], because they differ in color and motion from the background [?, ?, ?],
or because they distort patterns [?]. Specularities are a prodigious nuisance in
reconstruction, because specularities cause matching points in different images to
have different colors; various motion-based strategies have been developed to remove
them in these applications [?, ?, ?].

Color Constancy

Land reported a variety of color vision experiments (?, [?], [?], [?]). Finite-dimensional
linear models for spectral reflectances can be supported by an appeal to surface
physics as spectral absorption lines are thickened by solid state effects. The main
experimental justifications for finite-dimensional linear models of surface reflectance
are measurements, by ?, of the surface reflectance of a selection of standard refer-
ence surfaces known as Munsell chips, and measurements of a selection of natural
objects by ?. ? performed a principal axis decomposition of his data to obtain a set
of basis functions, and ? fitted weighted sums of these functions to Krinov’s date
to get good fits with patterned deviations. The first three principal axes explained
in each case a high percentage of the sample variance (near 99 %), and hence a
linear combination of these functions fitted all the sampled functions rather well.
More recently, ? fitted Cohen’s [?] basis vectors to a large set of data, including
Krinov’s [?] data, and further data on the surface reflectances of Munsell chips,
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and concluded that the dimension of an accurate model of surface reflectance was
on the order of five or six.

Finite-dimensional linear models are an important tool in color constancy.
There is a large collection of algorithms that follow rather naturally from the ap-
proach. Some algorithms exploit the properties of the linear spaces involved (?;
?; ?). Illumination can be inferred from: reference objects [?]; specular reflections
(Judd [?] writing in 1960 about early German work in surface color perception
refers to this as “a more usual view”; recent work includes [?, ?, ?, ?]); the average
color [?, ?, ?]; and the gamut (?, ?, ?, [?]).

The structure of the family of maps associated with a change in illumination
has been studied quite extensively. The first work is due to Von Kries (who didn’t
think about it quite the way we do). He assumed that color constancy was, in
essence, the result of independent lightness calculations in each channel, meaning
that one can rectify an image by scaling each channel independently. This practice
is known as Von Kries’ law. The law boils down to assuming that the family of
maps consists of diagonal matrices. Von Kries’ law has proved to be a remarkably
good law [?]. Current best practice involves applying a linear transformation to the
channels and then scaling the result using diagonal maps (?, [?]).

Reference datasets are available for testing methods [?]. Color constancy
methods seem to work quite well in practice [?, ?]; whether this is good enough is
debated [?, ?]. Probabilistic methods can be applied to color constancy [?]. Prior
models on illumination are a significant cue [?].

There is surprisingly little work on color constancy that unifies a study of the
spatial variation in illumination with solutions for surface color, which is why we
were reduced to ignoring a number of terms in our color model. Ideally, one would
work in shadows and surface orientation, too. Again, the whole thing looks like
an inference problem to us, but a subtle one. The main papers on this extremely
important topic are ?, ?. There is substantial room for research here, too.

Interreflections between colored surfaces lead to a phenomenon called color
bleeding, where each surface reflects colored light onto the other. The phenomenon
can be surprisingly large in practice. People seem to be quite good at ignoring it
entirely, to the extent that most people don’t realize that the phenomenon occurs
at all. Discounting color bleeding probably uses spatial cues. Some skill is required
to spot really compelling examples. The best known to the authors is occasionally
seen in southern California, where there are many large hedges of white oleander
by the roadside. White oleander has dark leaves and white flowers. Occasionally, in
bright sunlight, one sees a hedge with yellow oleander flowers; a moment’s thought
attributes the color to the yellow service truck parked by the road reflecting yellow
light onto the white flowers. One’s ability to discount color bleeding effects seems to
have been disrupted by the dark leaves of the plant breaking up the spatial pattern.
Color bleeding contains cues to surface color that are quite difficult to disentangle
(see ?, ?, and ? for studies).

It is possible to formulate and attack color constancy as an inference prob-
lem [?, ?]. The advantage of this approach is that, for given data, the algorithm
could report a range of possible surface colors, with posterior weights.


