
C H A P T E R 8

Detecting Edges

An object is separated from its background in an image by an occluding contour.
Draw a path in the image that crosses such a contour. On one side, pixels lie
on the object, and on the other, the background. Finding occluding contours is
an important challenge, because the outline of an object—which is one cue to its
shape—is formed by occluding contours. We can expect that, at occluding contours,
there are often substantial changes in image brightness. There are other important
causes of sharp changes in image brightness, including sharp changes in albedo, in
surface orientation, or in illumination. Each can provide interesting information
about the objects in the world. Occluding contours carry shape information; sharp
changes in albedo carry texture information; sharp changes in surface orientation
tell us about shape; and illumination changes might tell us where the sun is. All
this means it is useful to find and reason about sharp changes in image intensity.

Sharp changes in brightness cause large image gradients. Section 8.1 describes
methods to extract image gradients. One important use of gradients is to find edges
or edge points, where the brightness changes particularly sharply (Section 8.2.1).
The edge points produced tend to be sensitive to changes in contrast (i.e., the size
of the difference in brightness across the edge), which can result from changes in
lighting. Often, it is helpful to use the orientation of the gradient vector (Sec-
tion 8.2.2), which does not depend on contrast. For example, at corners, the image
gradient vector swings sharply in orientation.

Corners are important, because they are easy to match from image to image.
At a corner, we expect to see strong image gradients that turn fast locally, and
this cue yields a corner detector (Section 9.1.1). If we can describe a neighborhood
around a corner, we can match descriptions across images. Such matching is an
important basic subroutine in computer vision.

8.1 COMPUTING THE IMAGE GRADIENT

For an image I, the gradient is

∇I = (
∂I
∂x
,
∂I
∂y

)T ,

which we could estimate by observing that

∂I
∂x

= lim
δx→0

I(x+ δx, y)− I(x, y)
δx

≈ Ii+1,j − Ii,j .

By the same argument, ∂I/∂y ≈ Ii,j+1 − Ii,j . These kinds of derivative estimates
are known as finite differences. Image noise tends to result in pixels not looking
like their neighbors, so that simple finite differences tend to give strong responses
to noise. As a result, just taking one finite difference for x and one for y gives noisy
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FIGURE 8.1: The top row shows estimates of derivatives obtained by finite differ-
ences. The image at the left shows a detail from a picture of a zebra. The center
image shows the partial derivative in the y-direction—which responds strongly to
horizontal stripes and weakly to vertical stripes—and the right image shows the
partial derivative in the x-direction—which responds strongly to vertical stripes and
weakly to horizontal stripes. However, finite differences respond strongly to noise.
The image at center left shows a detail from a picture of a zebra; the next image
in the row is obtained by adding a random number with zero mean and normal dis-
tribution (σ = 0.03; the darkest value in the image is 0, and the lightest 1) to each
pixel; and the third image is obtained by adding a random number with zero mean
and normal distribution (σ = 0.09) to each pixel. The bottom row shows the
partial derivative in the x-direction of the image at the head of the row. Notice how
strongly the differentiation process emphasizes image noise; the derivative figures
look increasingly grainy. In the derivative figures, a mid-gray level is a zero value,
a dark gray level is a negative value, and a light gray level is a positive value.

gradient estimates. The way to deal with this problem is to smooth the image and
then differentiate it (we could also smooth the derivative).

As Figure 8.1 suggests, finite differences give a most unsatisfactory estimate
of the derivative. This is because finite differences respond strongly (i.e., have an
output with large magnitude) at fast changes, and fast changes are characteristic of
noise. Roughly, this is because image pixels tend to look like one another. For exam-
ple, if we had bought a discount camera with some pixels that were stuck at either
black or white, the output of the finite difference process would be large at those
pixels because they are, in general, substantially different from their neighbors. All
this suggests that some form of smoothing is appropriate before differentiation.
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Smoothing works because, in general, any image gradient of significance to
us has effects over a pool of pixels. For example, the contour of an object can
result in a long chain of points where the image derivative is large. As another
example, a corner typically involves many tens of pixels. If the noise at each pixel
is independent and additive, then large image derivatives caused by noise are a local
event. Smoothing the image before we differentiate will tend to suppress noise at
the scale of individual pixels, because it will tend to make pixels look like their
neighbors. However, gradients that are supported by evidence over multiple pixels
will tend not to be smoothed out. This suggests differentiating a smoothed image
(Figure 8.2).

8.1.1 Derivative of Gaussian Filters

Smoothing an image and then differentiating it is the same as convolving it with the
derivative of a smoothing kernel. This fact is most easily seen by thinking about
continuous convolution.

First, differentiation is linear and shift invariant. This means that there is
some kernel—we dodge the question of what it looks like—that differentiates. That
is, given a function I(x, y),

∂I

∂x
= K(∂/∂x) ∗ I.

Now we want the derivative of a smoothed function. We write the convolution
kernel for the smoothing as S. Recalling that convolution is associative, we have

(K(∂/∂x) ∗ (S ∗ I)) = (K(∂/∂x) ∗ S) ∗ I = (
∂S

∂x
) ∗ I.

This fact appears in its most commonly used form when the smoothing function is
a Gaussian; we can then write

∂ (Gσ ∗ I)
∂x

= (
∂Gσ

∂x
) ∗ I,

that is, we need only convolve with the derivative of the Gaussian, rather than
convolve and then differentiate. As discussed in Section ??, smoothed derivative
filters look like the effects they are intended to detect. The x-derivative filters look
like a vertical light blob next to a vertical dark blob (an arrangement where there
is a large x-derivative), and so on (Figure ??). Smoothing results in much smaller
noise responses from the derivative estimates (Figure 8.2).

The choice of σ used in estimating the derivative is often called the scale of
the smoothing. Scale has a substantial effect on the response of a derivative filter.
Assume we have a narrow bar on a constant background, rather like the zebra’s
whisker. Smoothing on a scale smaller than the width of the bar means that the
filter responds on each side of the bar, and we are able to resolve the rising and
falling edges of the bar. If the filter width is much greater, the bar is smoothed into
the background and the bar generates little or no response (Figure 8.3).

The most usual noise model is the additive stationary Gaussian noise model,
where each pixel has added to it a value chosen independently from the same
Gaussian probability distribution. This distribution almost always has zero mean.
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d/dx

FIGURE 8.2: Derivative of Gaussian filters are less extroverted in their response
to noise than finite difference filters. The image at top left shows a detail from
a picture of a zebra; top center shows the same image corrupted by zero mean
stationary additive Gaussian noise, with σ = 0.03 (pixel values range from 0 to
1). Top right shows the same image corrupted by zero mean stationary additive
Gaussian noise, with σ = 0.09. The second row shows the finite difference in the
x-direction of each image. These images are scaled so that zero is mid-gray, the
most negative pixel is dark, and the most positive pixel is light; we used a different
scaling for each image. Notice how the noise results in occasional strong derivatives,
shown by a graininess in the derivative maps for the noisy images. The final row
shows the partial derivative in the x-direction of each image, in each case estimated
by a derivative of Gaussian filter with σ one pixel. Again, these images are scaled
so that zero is mid-gray, the most negative pixel is dark, and the most positive pixel
is light; we used a different scaling for each image. The images are smaller than the
input image, because we used a 13 × 13 pixel discrete kernel. This means that the
six rows (resp. columns) on the top and bottom of the image (resp. left and right)
cannot be evaluated exactly, because for these rows the kernel covers some points
outside the image; we have omitted these values. Notice how the smoothing helps
reduce the impact of the noise; this is emphasized by the detail images (between
the second and final row), which are doubled in size. The details show patches that
correspond from the finite difference image and the smoothed derivative estimate.
We show a derivative of Gaussian filter kernel, which (as we expect) looks like the
structure it is supposed to find. This is not to scale (it’d be extremely small if it
were).

The standard deviation is a parameter of the model. The model is intended to
describe thermal noise in cameras and is illustrated in Figure 8.5.
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FIGURE 8.3: The scale (i.e., σ) of the Gaussian used in a derivative of Gaussian
filter has significant effects on the results. The three images show estimates of the
derivative in the x direction of an image of the head of a zebra obtained using a
derivative of Gaussian filter with σ one pixel, three pixels, and seven pixels (left
to right). Note how images at a finer scale show some hair, the animal’s whiskers
disappear at a medium scale, and the fine stripes at the top of the muzzle disappear
at the coarser scale.

FIGURE 8.4: The gradient magnitude can be estimated by smoothing an image and
then differentiating it. This is equivalent to convolving with the derivative of a
smoothing kernel. The extent of the smoothing affects the gradient magnitude; in
this figure, we show the gradient magnitude for the figure of a zebra at different
scales. At the center, gradient magnitude estimated using the derivatives of a
Gaussian with σ = 1 pixel; and on the right, gradient magnitude estimated using
the derivatives of a Gaussian with σ = 2 pixel. Notice that large values of the
gradient magnitude form thick trails.

8.2 REPRESENTING THE IMAGE GRADIENT

There are two important representations of the image gradient. The first is to
compute edges, where there are very fast changes in brightness. These are usually
seen as points where the magnitude of the gradient is extremal (Section 8.2.1). The
second is to use gradient orientations, which are largely independent of illumination
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FIGURE 8.5: The top row shows three realizations of a stationary additive Gaussian
noise process. We have added half the range of brightnesses to these images to show
both negative and positive values of noise. From left to right, the noise has standard
deviation 1/256, 4/256, and 16/256 of the full range of brightness, respectively. This
corresponds roughly to bits zero, two, and five of a camera that has an output range
of eight bits per pixel. The lower row shows this noise added to an image. In
each case, values below zero or above the full range have been adjusted to zero or
the maximum value accordingly.

intensity (Section 8.8).

8.2.1 Gradient-Based Edge Detectors

We think of sharp changes in image intensity as lying on curves in the image, which
are known as edges; the curves are made up of edge points. Many effects can cause
edges; worse, each effect that can cause an edge is not guaranteed to cause an edge.
For example, an object may happen to be the same intensity as the background, and
so the occluding contour will not result in an edge. This means that interpreting
edge points can be very difficult. Nonetheless, they are worth finding.

In the most common method for finding edges, we start by computing an
estimate of the gradient magnitude. The gradient magnitude is large along a thick
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Form an estimate of the image gradient
Compute the gradient magnitude
While there are points with high gradient
magnitude that have not been visited
Find a start point that is a local maximum in the
direction perpendicular to the gradient
erasing points that have been checked

While possible, expand a chain through
the current point by:
1) predicting a set of next points, using

the direction perpendicular to the gradient
2) finding which (if any) is a local maximum

in the gradient direction
3) testing if the gradient magnitude at the

maximum is sufficiently large
4) leaving a record that the point and

neighbors have been visited
record the next point, which becomes the current point

end
end

Algorithm 8.1: Gradient-Based Edge Detection.

trail in the image (Figure 8.4), but occluding contours are curves, so we must obtain
a curve of the most distinctive points on this trail.

There is clearly no objective definition, and we can proceed by reasonable
intuition. The gradient magnitude can be thought of as a chain of low hills. Marking
local maxima would mark isolated points—the hilltops in the analogy. A better
criterion is to slice the gradient magnitude along the gradient direction, which
should be perpendicular to the edge, and mark the points along the slice where the
magnitude is maximal. This would get a chain of points along the crown of the hills
in our chain. Each point in the chain can be used to predict the location of the next
point, which will be in a direction roughly at right angles to the gradient at the
edge point (Figure 8.6). Forming these chains is called nonmaximum suppression.
It is relatively straightforward to identify the location of these chains at a resolution
finer than that of the pixel grid (Figure 8.6).

There are too many of these chains to come close to being a reasonable repre-
sentation of object boundaries. In part, this is because we have marked maxima of
the gradient magnitude without regard to how large these maxima are. It is more
usual to apply a threshold test to ensure that the maxima are greater than some
lower bound. This in turn leads to broken edge curves. The usual trick for dealing
with this is to use hysteresis; we have two thresholds and refer to the larger when
starting an edge chain and the smaller while following it. The trick often results in
an improvement in edge outputs. These considerations yield Algorithm 8.1. Most
current edgefinders follow these lines.
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FIGURE 8.6: Nonmaximum suppression obtains points where the gradient magnitude
is at a maximum along the direction of the gradient. The figure on the left shows
how we reconstruct the gradient magnitude. The dots are the pixel grid. We are
at pixel q, attempting to determine whether the gradient is at a maximum; the
gradient direction through q does not pass through any convenient pixels in the
forward or backward direction, so we must interpolate to obtain the values of the
gradient magnitude at p and r. If the value at q is larger than both, q is an edge
point. Typically, the magnitude values are reconstructed with a linear interpolate,
which in this case would use the pixels to the left and right of p and r, respectively,
to interpolate values at those points. On the right, we sketch how to find candidates
for the next edge point given that q is an edge point; an appropriate search direction
is perpendicular to the gradient, so that points s and t should be considered for the
next edge point. Notice that, in principle, we don’t need to restrict ourselves to pixel
points on the image grid, because we know where the predicted position lies between
s and t. Hence, we could again interpolate to obtain gradient values for points off
the grid.

8.2.2 Orientations

As the light gets brighter or darker (or as the camera aperture opens or closes), the
image will get brighter or darker, which we can represent as a scaling of the image
value. The image I will be replaced with sI for some value s. The magnitude
of the gradient scales with the image, i.e., ||∇I|| will be replaced with s||∇I||. This
creates problems for edge detectors, because edge points may appear and disappear
as the image gradient values go above and below thresholds with the scaling. One
solution is to represent the orientation of image gradient, which is unaffected by
scaling (Figure 8.8). The gradient orientation field depends on the smoothing scale
at which the gradient was computed. Orientation fields can be quite characteristic
of particular textures (Figure 8.10), and we will use this important property to
come up with more complex features below.
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FIGURE 8.7: Edge points marked on the pixel grid for the image shown on the top.
The edge points on the left are obtained using a Gaussian smoothing filter at σ one
pixel, and gradient magnitude has been tested against a high threshold to determine
whether a point is an edge point. The edge points at the center are obtained us-
ing a Gaussian smoothing filter at σ four pixels, and gradient magnitude has been
tested against a high threshold to determine whether a point is an edge point. The
edge points on the right are obtained using a Gaussian smoothing filter at σ four
pixels, and gradient magnitude has been tested against a low threshold to determine
whether a point is an edge point. At a fine scale, fine detail at high contrast gener-
ates edge points, which disappear at the coarser scale. When the threshold is high,
curves of edge points are often broken because the gradient magnitude dips below the
threshold; for the low threshold, a variety of new edge points of dubious significance
are introduced.

8.3 FINDING CORNERS AND BUILDING NEIGHBORHOODS

Points worth matching are corners, because a corner can be localized, which means
we can tell where a corner is. This motivates the more general term interest point
often used to describe a corner. In this view, corners are interesting because we can
tell where they are. Place a small window over a patch of constant image value. If
you translate the window in any direction, the image in the window will not change
significantly. This means you cannot give a reliable estimate of the location of the
window from its gray levels. Similarly, if you translate a window up and down an
edge, the image in the window doesn’t change, so you cannot estimate location



Section 8.3 Finding Corners and Building Neighborhoods 99

FIGURE 8.8: The magnitude of the image gradient changes when one increases or
decreases the intensity. The orientation of the image gradient does not change; we
have plotted every 10th orientation arrow, to make the figure easier to read. Note
how the directions of the gradient arrows are fixed, whereas the size changes. Philip
Gatward cO Dorling Kindersley, used with permission.

along the edge (this observation used to be known as the aperture problem). But
with a corner, any movement of the window changes the image in the window (i.e.,
the patch of image around the corner is not self-similar), so you can estimate the
location of the corner. Corners are not the only type of local image structure with
this property (Section ??)

There are many ways of representing a neighborhood around an interesting
corner. Methods vary depending on what might happen to the neighborhood. In
what follows, we will assume that neighborhoods are only translated, rotated, and
scaled (rather than, say, subjected to an affine or projective transformation), and
so without loss of generality we can assume that the patches are circular. We
must estimate the radius of this circle. There is technical machinery available for
the neighborhoods that result from more complex transformations, but it is more
intricate; see Section ??.

8.3.1 Finding Corners

One way to find corners is to find edges, and then walk the edges looking for
a corner. This approach can work poorly, because edge detectors often fail at
corners. At sharp corners or unfortunately oriented corners, gradient estimates are
poor because the smoothing region covers the corner.

At a corner, we expect two important effects. First, there should be large
gradients. Second, in a small neighborhood, the gradient orientation should swing
sharply. We can identify corners by looking at variations in orientation within a
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FIGURE 8.9: The scale at which one takes the gradient affects the orientation field.
We show the overall trend of the orientation field by plotting a rose plot, where the
size of a wedge represents the relative frequency of that range of orientations. Left
shows an image of artists pastels at a fairly fine scale; here the edges are sharp,
and so only a small set of orientations occurs. In the heavily smoothed version on
the right, all edges are blurred and corners become smooth and blobby; as a result,
more orientations appear in the rose plot. Philip Gatward cO Dorling Kindersley,
used with permission.

window. In particular, the matrix

H =
∑

window

{
(∇I)(∇I)T

}
≈

∑
window

{
(∂Gσ

∂x ∗ I)(
∂Gσ

∂x ∗ I) (∂Gσ

∂x ∗ I)(
∂Gσ

∂y ∗ I)
(∂Gσ

∂x ∗ I)(
∂Gσ

∂y ∗ I) (∂Gσ

∂y ∗ I)(
∂Gσ

∂y ∗ I)

}

gives a good idea of the behavior of the orientation in a window. In a window of
constant gray level, both eigenvalues of this matrix are small because all the terms
are small. In an edge window, we expect to see one large eigenvalue associated with
gradients at the edge and one small eigenvalue because few gradients run in other
directions. But in a corner window, both eigenvalues should be large.

The Harris corner detector looks for local maxima of

det(H)− k( trace(H)
2

)2

where k is some constant [?]; we used 0.5 for Figure 9.1. These local maxima are
then tested against a threshold. This tests whether the product of the eigenvalues
(which is det(H)) is larger than the square of the average (which is (trace(H)/2)2).
Large, locally maximal values of this test function imply the eigenvalues are both
big, which is what we want. Figure 9.1 illustrates corners found with the Harris
detector. This detector is unaffected by translation and rotation (Figure 9.2).
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FIGURE 8.10: Different patterns have quite different orientation histograms. The
left shows rose plots and images for a picture of artists pastels at two different
scales; the right shows rose plots and images for a set of pastels arranged into
a circular pattern. Notice how the pattern of orientations at a particular scale,
and also the changes across scales, are quite different for these two very different
patterns. Philip Gatward cO Dorling Kindersley, used with permission.
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FIGURE 8.11: The response of the Harris corner detector visualized for two detail
regions of an image of a box of colored pencils (center). Top left, a detail from the
pencil points; top center, the response of the Harris corner detector, where more
positive values are lighter. The top right shows these overlaid on the original
image. To overlay this map, we added the images, so that areas where the overlap
is notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). Note that the detector is affected
by contrast, so that, for example, the point of the mid-gray pencil at the top of this
figure generates a very strong corner response, but the points of the darker pencils
do not, because they have little contrast with the tray. For the darker pencils, the
strong, contrasty corners occur where the lead of the pencil meets the wood. The
bottom sequence shows corners for a detail of pencil ends. Notice that responses
are quite local, and there are a relatively small number of very strong corners. Steve
Gorton cO Dorling Kindersley, used with permission.
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FIGURE 8.12: The response of the Harris corner detector is unaffected by rotation
and translation. The top row shows the response of the detector on a detail of the
image on the far left. The bottom row shows the response of the detector on a
corresponding detail from a rotated version of the image. For each row, we show the
detail window (left); the response of the Harris corner detector, where more positive
values are lighter (center); and the responses overlaid on the image (right). Notice
that responses are quite local, and there are a relatively small number of very strong
corners. To overlay this map, we added the images, so that areas where the overlap
is notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). The arm and hammer in the
top row match those in the bottom row; notice how well the maps of Harris corner
detector responses match, too. cO Dorling Kindersley, used with permission.


