
C H A P T E R 10

Fitting

Sometimes data points (pixels; edge points; and so on) belong together be-
cause together they mostly conform to some explicit model. So, for example, many
of the points in Figure 35.2 lie on a line (at least by eye). We must then find the
model most points conform to. This activity is usually called fitting.

Typically, there are three problems in fitting a model to data points. First,
given the points that belong to the model, what is the model? Second, which points
belong to which model? Finally, how many models are there?

10.1 LEAST SQUARES LINE FITTING

Line fitting is extremely useful. In many applications, objects are characterized
by the presence of straight lines. Assume that all the points that belong to a
particular line are known, and the parameters of the line must be found. We adopt
the notation

u =

∑
ui
k

to simplify the presentation.

10.1.1 Least Squares

Least squares is a fitting procedure with a long tradition (which is the only reason
we describe it!). It yields a simple analysis but has a substantial bias. For this
approach, we represent a line as y = ax + b. At each data point, we have (xi, yi);
we decide to choose the line that best predicts the measured y coordinate for each
measured x coordinate.

This means we want to choose the line that minimises∑
i

(yi − axi − b)2.

By differentiation, the line is given by the solution to the problem(
y2

y

)
=

(
x2 x
x 1

)(
a
b

)
.

Although this is a standard linear solution to a classical problem, it’s actually not
much help in vision applications because the model is an extremely poor model.
The difficulty is that the measurement error is dependent on coordinate frame — we
are counting vertical offsets from the line as errors, which means that near vertical
lines lead to quite large values of the error and quite funny fits (Figure 10.1). In fact,
the process is so dependent on coordinate frame that it doesn’t represent vertical
lines at all.

114

Section 10.1 Least Squares Line Fitting 115

FIGURE 10.1: Left: Total least-squares models data points as being generated by an
abstract point along the line to which is added a vector perpendicular to the line.
We wish to choose a line that minimizes the sum of distances to tokens measured
(as distance usually is!) perpendicular to the line. Right: Least squares follows the
same general outline, but assumes that the error appears only in the y coordinate.
This yields a (very slightly) simpler mathematical problem at the cost of a poor fit.

10.1.2 Total Least Squares

We could work with the actual distance between the point and the line (rather
than the vertical distance). This leads to a problem known as total least squares.
We can represent a line as the collection of points where ax + by + c = 0. Every
line can be represented in this way, and we can think of a line as a triple of values
(a, b, c). Notice that for λ ̸= 0, the line given by λ(a, b, c) is the same as the line
represented by (a, b, c). In the exercises, you are asked to prove the simple, but
extremely useful, result that the perpendicular distance from a point (u, v) to a
line (a, b, c) is given by

abs(au+ bv + c) if a2 + b2 = 1.

In our experience, this fact is useful enough to be worth memorizing. To minimize
the sum of perpendicular distances between points and lines, we need to minimize∑

i

(axi + byi + c)2,

where a2 + b2 = 1 and C is some normalizing constant of no interest. Thus,
a maximum-likelihood solution is obtained by maximizing this expression. Now
using a Lagrange multiplier λ, we have a solution if x2 xy x

xy y2 y
x y 1

 a
b
c

 = λ

 2a
2b
0

This means that

c = −ax− by

116 Chapter 10 Fitting

and we can substitute this back to get the eigenvalue problem(
x2 − x x xy − x y
xy − x y y2 − y y

)(
a
b

)
= µ

(
a
b

)
Because this is a 2D eigenvalue problem, two solutions up to scale can be obtained
in closed form (for those who care - it’s usually done numerically!). The scale is
obtained from the constraint that a2 + b2 = 1. The two solutions to this problem
are lines at right angles, and one maximises the sum of squared distances and the
other minimises it.

10.2 ROBUSTNESS

All of the line fitting methods described involve squared error terms. This can lead
to poor fits in practice because a single wildly inappropriate data point can give
errors that dominate those due to many good data points; these errors can result
in a substantial bias in the fitting process (Figure 10.2). It is difficult to avoid
such data points — usually called outliers — in practice. Errors in collecting
or transcribing data points is one important source of outliers. Another common
source is a problem with the model — perhaps some rare but important effect has
been ignored or the magnitude of an effect has been badly underestimated. Finally,
errors in correspondence are particularly prone to generating outliers. Practical
vision problems usually involve outliers.

One approach to this problem puts the model at fault: The model predicts
these outliers occurring perhaps once in the lifetime in the universe, and they clearly
occur much more often than that. The natural response is to improve the model
either by giving the noise “heavier tails” (Section 10.2.1) or by allowing an explicit
outlier model. The second strategy requires a study of missing data problems —
we don’t know which point is an outlier and which isn’t — and we defer discussion
until Section ?? in the following chapter. An alternative approach is to search for
points that appear to be good (Section 25.2.2).

10.2.1 M-estimators

The difficulty with modeling the source of outliers is that the model might be
wrong. Generally, the best we can hope for from a probabilistic model of a process
is that it is quite close to the right model. Assume that we are guaranteed that
our model of a process is close to the right model — say, the distance between
the density functions in some appropriate sense is less than ϵ. We can use this
guarantee to reason about the design of estimation procedures for the parameters
of the model. In particular, we can choose an estimation procedure by assuming
that nature is malicious and well informed about statistics. These are generally
sound assumptions for any enterprise; the world is full of opportunities for painful
and expensive lessons in practical statistics. In this line of reasoning, we assess the
goodness of an estimator by assuming that somewhere in the collection of processes
close to our model is the real process, and it just happens to be the one that makes
the estimator produce the worst possible estimates. The best estimator is the one
that behaves best on the worst distribution close to the parametric model. This is
a criterion that can be used to produce a wide variety of estimators.

Section 10.2 Robustness 117

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIGURE 10.2: Least-squares line fitting is extremely sensitive to outliers, both in x
and y coordinates. At the top left, a good least-squares fit of a line to a set of
points. Top right shows the same set of points, but with the x coordinate of one
point corrupted. In this case, the slope of the fitted line has swung wildly. Bottom
left shows the same set of points, but with the y-coordinate of one point corrupted.
In this particular case, the x intercept has changed. These three figures are on the
same set of axes for comparison, but this choice of axes does not clearly show how
bad the fit is for the third case; bottom right shows a detail of this case — the
line is clearly a bad fit.

AnM-estimator estimates parameters by minimizing an expression of the form∑
i

ρ(ri(xi, θ);σ),

where θ are the parameters of the model being fitted and ri(xi, θ) is the residual
error of the model on the ith data point. Generally, ρ(u;σ) looks like u2 for part
of its range and then flattens out. A common choice is

ρ(u;σ) =
u2

σ2 + u2
.

The parameter σ controls the point at which the function flattens out; we have
plotted a variety of examples in Figure 10.3. There are many other M-estimators

118 Chapter 10 Fitting

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

10

0.1

y=x
2

FIGURE 10.3: The function ρ(x;σ) = x2/(σ2 + x2), plotted for σ2 = 0.1, 1, and 10,
with a plot of y = x2 for comparison. Replacing quadratic terms with ρ reduces the
influence of outliers on a fit — a point that is several multiples of σ away from the
fitted curve is going to have almost no effect on the coefficients of the fitted curve
because the value of ρ will be close to 1 and will change extremely slowly with the
distance from the fitted curve.

available. Typically, they are discussed in terms of their influence function, which
is defined as

∂ρ

∂θ
.

This is natural because our criterion is∑
i

ρ(ri(xi, θ);σ)
∂ρ

∂θ
= 0.

For the kind of problems we consider, we would expect a good influence function
to be antisymmetric — there is no difference between a slight overprediction and
a slight underprediction — and to tail off with large values — because we want to
limit the influence of the outliers.

There are two tricky issues with using M-estimators. First, the extremization
problem is non-linear and must be solved iteratively. The standard difficulties
apply: There may be more than one local minimum, the method may diverge, and
the behavior of the method is likely to be quite dependent on the start point. A
common strategy for dealing with this problem is to draw a subsample of the data
set, fit to that subsample using least squares, and use this as a start point for the
fitting process. We do this for a large number of different subsamples — enough
to ensure that there is a high probability that in that set there is at least one that
consists entirely of good data points.

Second, as Figures 10.4 and 10.5 indicate, the estimators require a sensible
estimate of σ, which is often referred to as scale. Typically, the scale estimate is

Section 10.2 Robustness 119

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIGURE 10.4: The top row shows lines fitted to the second dataset of Figure 10.2
using a weighting function that deemphasizes the contribution of distant points (the
function ϕ of Figure 10.3). On the left, µ has about the right value; the contribution
of the outlier has been down-weighted, and the fit is good. In the center, the value
of µ is too small so that the fit is insensitive to the position of all the data points,
meaning that its relationship to the data is obscure. On the right, the value of
µ is too large, meaning that the outlier makes about the same contribution that it
does in least-squares. The bottom row shows closeups of the fitted line and the
non-outlying data points for the same cases.

supplied at each iteration of the solution method; a popular estimate of scale is

σ(n) = 1.4826 mediani |r(n)i (xi; θ
(n−1))| .

An M-estimator can be thought of as a trick for ensuring that there is more
probability in the tails than would otherwise occur with a quadratic error. The
function that is minimized looks like distance for small values of x — thus, for
valid data points, the behavior of the M-estimator should be rather like maximum
likelihood — and like a constant for large values of x — meaning that a component
of probability is given to the tails of the distribution. The strategy of the previous
section can be seen as an M-estimator, but with the difficulty that the influence
function is discontinuous, meaning that obtaining a minimum is tricky.

10.2.2 RANSAC

An alternative to modifying the generative model to have heavier tails is to search
the collection of data points for good points. This is quite easily done by an iterative
process: First, we choose a small subset of points and fit to that subset, then we see
how many other points fit to the resulting object. We continue this process until
we have a high probability of finding the structure we are looking for.

120 Chapter 10 Fitting

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIGURE 10.5: The top row shows lines fitted to the third dataset of Figure 10.2
using a weighting function that deemphasizes the contribution of distant points (the
function ϕ of Figure 10.3). On the left, µ has about the right value; the contribution
of the outlier has been down-weighted, and the fit is good. In the center, the value
of µ is too small, so that the fit is insensitive to the position of all the data points,
meaning that its relationship to the data is obscure. On the right, the value of
µ is too large, meaning that the outlier makes about the same contribution that it
does in least-squares. The bottom row shows closeups of the fitted line and the
non-outlying data points, for the same cases.

For example, assume that we are fitting a line to a data set that consists of
about 50% outliers. If we draw pairs of points uniformly and at random, then about
a quarter of these pairs will consist entirely of good data points. We can identify
these good pairs by noticing that a large collection of other points lie close to the
line fitted to such a pair. Of course, a better estimate of the line could then be
obtained by fitting a line to the points that lie close to our current line.

This approach leads to an algorithm — search for a random sample that leads
to a fit on which many of the data points agree. The algorithm is usually called
RANSAC, for RANdom SAmple Consensus, and is displayed in Algorithm 25.1. To
make this algorithm practical, we need to choose three parameters.

The Number of Samples Required Our samples consist of sets of points
drawn uniformly and at random from the data set. Each sample contains the
minimum number of points required to fit the abstraction we wish to fit. For
example, if we wish to fit lines, we draw pairs of points; if we wish to fit circles,
we draw triples of points, and so on. We assume that we need to draw n data
points, and that w is the fraction of these points that are good (we need only a
reasonable estimate of this number). Now the expected value of the number of

Section 10.2 Robustness 121

draws k required to get one point is given by

E[k] = 1P (one good sample in one draw) + 2P (one good sample in two draws) + . . .

= wn + 2(1− wn)wn + 3(1− wn)2wn + . . .

= w−n

(where the last step takes a little manipulation of algebraic series). We would like
to be fairly confident that we have seen a good sample, so we wish to draw more
than w−n samples; a natural thing to do is to add a few standard deviations to this
number. The standard deviation of k can be obtained as

SD(k) =

√
1− wn

wn
.

An alternative approach to this problem is to look at a number of samples that
guarantees a low probability z of seeing only bad samples. In this case, we have

(1− wn)k = z,

which means that

k =
log(z)

log(1− wn)
.

It is common to have to deal with data where w is unknown. However, each fitting
attempt contains information about w. In particular, if n data points are required,
then we can assume that the probability of a successful fit is wn. If we observe
a long sequence of fitting attempts, we can estimate w from this sequence. This
suggests that we start with a relatively low estimate of w, generate a sequence
of attempted fits, and then improve our estimate of w. If we have more fitting
attempts than we need for the new, the process can stop. The problem of updating
the estimate of w reduces to estimating the probability that a coin comes up heads
or tails given a sequence of fits.

Telling Whether a Point Is Close We need to determine whether a
point lies close to a line fitted to a sample. We do this by determining the distance
between the point and the fitted line, and testing that distance against a threshold
d; if the distance is below the threshold, the point lies close. In general, specifying
this parameter is part of the modeling process. For example, when we fitted lines
using maximum likelihood, there was a term σ in the model (which disappeared
in the manipulations to find an maximum). This term gives the average size of
deviations from the model being fitted.

In general, obtaining a value for this parameter is relatively simple. We gener-
ally need only an order of magnitude estimate, and the same value applies to many
different experiments. The parameter is often determined by trying a few values
and seeing what happens; another approach is to look at a few characteristic data
sets, fitting a line by eye, and estimating the average size of the deviations.

The Number of Points That Must Agree Assume that we have fitted a
line to some random sample of two data points. We need to know whether that line

122 Chapter 10 Fitting

is good. We do this by counting the number of points that lie within some distance
of the line (the distance was determined in the previous section). In particular,
assume that we know the probability that an outlier lies in this collection of points;
write this probability as y. We should like to choose some number of points t such
that yt is small (say less than 0.05).

There are two ways to proceed. One is to notice that y ≤ (1 − w) and to
choose t such that (1− w)t is small. Another is to get an estimate of y from some
model of outliers — for example, if the points lie in a unit square, the outliers are
uniform, and the distance threshold is d, then y ≤ 2

√
2d.

10.3 THE HOUGH TRANSFORM

The Hough transform is a method that promises a solution to all three problems (al-
though in practice rarely delivers it). It is something worth understanding because
the underlying method is quite general and appears in a number of applications.

One way to cluster points that could lie on the same structure is to record all
the structures on which each point lies and then look for structures that get many
votes. This (quite general) technique is known as the Hough transform. We take
each image token and determine all structures that could pass through that token.
We make a record of this set — you should think of this as voting — and repeat the
process for each token. We decide on what is present by looking at the votes. For
example, if we are grouping points that lie on lines, we take each point and vote
for all lines that could go through it; we now do this for each point. The line (or
lines) that are present should make themselves obvious because they pass through
many points and so have many votes.

10.3.1 Fitting Lines with the Hough Transform

Hough transforms tend to be most successfully applied to line finding. We do this
example to illustrate the method and its drawbacks. A line is easily parametrized
as a collection of points (x, y) such that

x cos θ + y sin θ + r = 0.

Now any pair of (θ, r) represents a unique line, where r ≥ 0 is the perpendic-
ular distance from the line to the origin and 0 ≤ θ < 2π. We call the set of pairs
(θ, r) line space; the space can be visualized as a half-infinite cylinder. There is a
family of lines that passes through any point token. In particular, the lines that
lie on the curve in line space given by r = −x0 cos θ + y0 sin θ all pass through the
point token at (x0, y0).

Because the image has a known size, there is some R such that we are not
interested in lines for r > R — these lines are too far away from the origin for us
to see them. This means that the lines we are interested in form a bounded subset
of the plane, and we discretize this with some convenient grid (which we’ll discuss
later). The grid elements can be thought of as buckets into which we place votes.
This grid of buckets is referred to as the accumulator array. For each point token,
we add a vote to the total formed for every grid element on the curve corresponding
to the point token. If there are many point tokens that are collinear, we expect
there to be many votes in the grid element corresponding to that line.

Section 10.3 The Hough Transform 123

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIGURE 10.6: The Hough transform maps each point like token to a curve of possible
lines (or other parametric curves – but here we show lines) through that point. Left
shows points, and right shows the corresponding accumulator array (the number
of votes is indicated by the grey level, with a large number of votes being indicated
by bright points). Here we see what happens using a set of 20 points drawn from a
line. Corresponding to each point is a curve of votes in the accumulator array; the
largest set of votes is 20 (which corresponds to the brightest point). The horizontal
variable in the accumulator array is θ and the vertical variable is r; there are 200
steps in each direction, and r lies in the range [0, 1.55]. We have a clean peak
corresponding to the line.

10.3.2 Practical Problems with the Hough Transform

Unfortunately, the Hough transform comes with a number of important practical
problems:

• Quantization errors: An appropriate grid size is difficult to pick. Too
coarse a grid can lead to large values of the vote being obtained falsely because
many quite different lines correspond to a bucket. Too fine a grid can lead
to lines not being found because votes resulting from tokens that are not
exactly collinear end up in different buckets, and no bucket has a large vote
(Figure ??).

• Difficulties with noise: The attraction of the Hough transform is that it
connects widely separated tokens that lie close to some form of parametric
curve. This is also a weakness; it is usually possible to find many quite
good phantom lines in a large set of reasonably uniformly distributed tokens
(Figure 10.8). This means that regions of texture can generate peaks in
the voting array that are larger than those associated with the lines sought
(Figures 10.9 and 10.10).

124 Chapter 10 Fitting

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIGURE 10.7: When the points of Figure 10.6 are perturbed by a random vector each
element of which is uniform in the range [0, 0.05], the curves in the accumulator
array are each slightly offset from one another. The maximum vote is now 6 (which
corresponds to the brightest value in this image — this value would be difficult to
see on the same scale as the top image).

10.4 CLASSIFYING IMAGES BY VOTING

The Hough transform is worth talking about because, despite the problems, it can
be used. You should think of the Hough transform as a voting procedure. For line
fitting, each token has an opinion about where a line could be, and registers that
opinion in the accumulator array. Then if any lines have enough support, we decide
they are present. Problems occur because there are too many tokens; because each
token can vote for many different lines; and because it is hard to choose a grid size.

Now imagine each token is more interesting than a point. For example, tokens
might be a family of patterns around interest points, represented by (say) a SIFT
feature. Then there might be relatively few tokens, and each might cast relatively
few votes. In this case, we would expect it to be relatively straightforward to
identify peaks in the accumulator array.

It is possible to build an image classifier like this. Assume we wish to know
whether an image contains (say) a car or not. We will also assume that, if it does
contain a car, the car is pretty prominent and is seen from a reasonable viewpoint.
We start by finding a collection of images of cars, and marking the location of
the car in each image. We then find interest points for a large number of car and
non-car images, and compute SIFT (or other) feature descriptors for these interest
points. We now look for interest points with feature descriptors that (a) appear
very often in the car images and (b) appear very seldom in the non car images. One
example might be an interest point that sits at the center of a wheel. We will try to
predict the location of the car using these interest points. To do so, we need to deal
with two issues: first, corresponding interest points might look somewhat different
(wheels change in appearance); second, different versions of the same interest point

Section 10.4 Classifying Images by Voting 125

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIGURE 10.8: The Hough transform for a set of random points can lead to quite large
sets of votes in the accumulator array. As in Figure ??, the left-hand column
shows points, and the right-hand column shows the corresponding accumulator
arrays (the number of votes is indicated by the grey level, with a large number of
votes being indicated by bright points). In this case, the data points are noise points
(both coordinates are uniform random numbers in the range [0, 1]); the accumulator
array in this case contains many points of overlap, and the maximum vote is now
4 (compared with 6 in Figure ??). Figures 10.9 and 10.10 explore noise issues
somewhat further.

might predict the center of the car in different places (so the front wheel thinks the
center is behind it, and the back wheel thinks the center is in front of it).

10.4.1 Vector Quantizing Descriptors with K-Means

Wheels (and interest points) can look different from car to car. Vector quantization
is a strategy to suppress small differences between interest points, so as to come up
with a representation that is good for most cars.

We observe N interest points in many different images. Write vi for the
feature vector describing the i’th interest point. We expect that there are interest
points that mostly look similar from image to image (though they might not be
exactly the same) and that there are different kinds of such interest point. So,
for example, wheels look mostly like one another and doorhandles look mostly like
one another but doorhandles do not look like wheels. We assume that there are k
different kinds of interest point. Every example of a given kind of interest point
has feature vectors that are similar to one another. Each kind of interest point has
feature vectors that are quite different. We want to (a) estimate what each kind
of interest point looks like and (b) decide what kind of interest point each example
belongs to. This is a clustering problem.

Assume that there are k different kinds of interest point (I will describe one
strategy to choose k in the next section – for the moment, assume it is known). We

126 Chapter 10 Fitting

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
5

10

15

20

Noise level

M
a
x

im
u

m
 n

u
m

b
e
r

o
f

v
o

te
s

FIGURE 10.9: The effects of noise make it difficult to use a Hough transform robustly.
The plot shows the maximum number of votes in the accumulator array for a Hough
transform of 20 points on a line perturbed by uniform noise plotted against the
magnitude of the noise. The noise displaces the curves from each other and quickly
leads to a collapse in the number of votes. The plot has been averaged over 10 trials.
The accumulator array had the same quantization for each case shown here.

want to construct a set of k centers cj that represent the typical feature vector of
each kind of interest point. Now define a N ×k table of discrete variables δij which
maps each interest point to its kind. We have δij = 1 if the i’th interest point is
of kind k, and 0 otherwise. Because each interest point can have only one kind, we
have that

∑
j δij = 1. We do not know δij and we do not know cj . But we believe

that every example has a feature vector that is close to the center for its kind. This
means that δij and cj should minimize∑

ij

δij (vi − cj)
T
(vi − cj) .

Getting an exact solution to this minimization problem is intractable, but a very
good approximate solution is quite easy to get. Notice that if we knew the centers,
it would be easy to compute the best δij . For the i’th data point, set the δij
corresponding to the closest center to 1, and that corresponding to all others to
zero. Similarly, if we know the δij , the centers are easy to compute. The j’th center
is the average of all the data points whose δij is one.

This suggests an algorithm. Come up with an initial estimate of the centers.
Now repeat: compute the δij , and re-estimate the centers. There are some impor-

Section 10.4 Classifying Images by Voting 127

20 40 60 80 100 120 140 160 180 200
3

4

5

6

7

8

9

10

11

12

Number of noise points

M
ax

im
u
m

 n
u
m

b
er

 o
f

v
o
te

s

FIGURE 10.10: A plot of the maximum number of votes in the accumulator array
for a Hough transform of a set of points whose coordinates are uniform random
numbers in the range [0, 1] plotted against the number of points. As the level of
noise goes up, the number of votes in the right bucket goes down, and the prospect
of obtaining a large spurious vote in the accumulator array goes up. The plots have
again been averaged over 10 trials. Compare this figure with Figure 10.9, but notice
the slightly different scales; the comparison suggests that it can be quite difficult to
pull a line out of noise with a Hough transform (because the number of votes for the
line might be comparable with the number of votes for a line due to noise). These
figures illustrate the importance of ruling out as many noise tokens as possible before
performing a Hough transform.

tant details to get right. We need to know when to stop, and averaging data points
to get the j’th center won’t work if there are no data points with δij = 1. Stopping
turns out to be straightforward. If the δij don’t change from the r’th iteration to
the r+1’th, the cluster centers won’t change from then on. It is usually enough to
stop when the cluster centers don’t change much.

128 Chapter 10 Fitting

Procedure: 10.1 K-Means Clustering

Choose k. Now choose k data points cj to act as cluster centers. Until
the cluster centers change very little

• Allocate each data point to cluster whose center is nearest.

• Now ensure that every cluster has at least one data point; one
way to do this is by supplying empty clusters with a point chosen
at random from points far from their cluster center.

• Replace the cluster centers with the mean of the elements in their
clusters.

It turns out the choice of initial estimates of the centers can matter a lot, too.
One natural strategy for initializing k-means is to choose k data items at random,
then use each as an initial cluster center. This approach is widely used, but has some
difficulties. The quality of the clustering can depend quite a lot on initialization,
and an unlucky choice of initial points might result in a poor clustering. One (again
quite widely adopted) strategy for managing this is to initialize several times, and
choose the clustering that performs best in your application. Another strategy,
which has quite good theoretical properties and a good reputation, is known as
k-means++. You choose a point x uniformly and at random from the dataset to
be the first cluster center. Then you compute the squared distance between that
point and each other point; write d2i (x) for the distance from the i’th point to the
first center. You now choose the other k − 1 cluster centers as IID draws from the
probability distribution

d2i (x)∑
u d

2
u(x)

.

K-Means allows us to estimate the center cj for each of k kinds of feature vec-
tor. Vector quantization consists of taking a feature vector and deciding which kind
it belongs to. We do this by finding the index of the closest center. We can do so for
feature vectors describing interest points in the training set, or for feature vectors
describing new interest points. Furthermore, we can tell which kinds of interest
point are most strongly associated with cars. For each kind of interest point, we
record the fraction of car images that have at least one such interest point. This is an
estimate of P (see j’th kind of interest point|car in image) = P (j|car). Similarly,
we record the fraction of non-car images that have at least one such interest point
(which would be an estimate of P (see j’th kind of interest point|not car in image) =
P (j| car)).

At this point, we could classify car vs non-car images with naive bayes. This
will work better than you’d expect (because naive bayes always does) but not
very well (because we are ignoring important information). An easy voting trick
improves classification significantly.

Section 10.5 Fitting Curves 129

10.4.2 Voting with a Generalized Hough Transform

Naive Bayes doesn’t use the fact that interest points are likely to be able to predict
where the car is. If they do so even approximately, the fact that several interest
points agree on the location of the car would strongly enhance our belief it was
there. Here is one procedure to use that information.

Choose kinds of interest point that are strongly associated with cars (P (j|car
is big and P (j| car) is small). For each example of this kind of interest point in
each example car image, record where the center of the car is relative to the interest
point’s coordinate system. Remember, you know the location, orientation and scale
of the window around the interest point. If the scale is big, you expect the center
of the car to be far away in pixels; and if it is small, you expect the center of the
car to be nearby in pixels. Now cluster these predictions to a small number using
k-means (quite possibly using an entirely different value of k from the one you used
to find kinds of interest points).

Now given an image that might contain a car, identify every example of each
kind of interest point that is strongly associated with a car. Record a vote for the
location of the center of the car for

10.5 FITTING CURVES

In principle, fitting curves is similar to fitting lines. We minimize the sum of squared
distances between the points and the curve. However, it is usually very hard to tell
the distance between a point and a curve. We can either solve this problem or apply
various approximations (which are usually chosen because they are computationally
simple, not because they result from clean models). We sketch some solutions for
the distance problem for the two main representations of curves.

10.5.1 Implicit Curves

The coordinates of implicit curves satisfy some parametric equation; if this equation
is a polynomial, then the curve is said to be algebraic, and this case is by far the
most common. Some common cases are given in Table 10.1.

The Distance from a Point to an Implicit Curve Now we would like
to know the distance from a data point to the closest point on the implicit curve.
Assume that the curve has the form ϕ(x, y) = 0. The vector from the closest point
on the implicit curve to the data point is normal to the curve, so the closest point
is given by finding all the (u, v) with the following properties:

1. (u, v) is a point on the curve — this means that ϕ(u, v) = 0;

2. s = (dx, dy)− (u, v) is normal to the curve.

Given all such s, the length of the shortest is the distance from the data point to
the curve. The second criterion requires a little work to determine the normal. The
normal to an implicit curve is the direction in which we leave the curve fastest;
along this direction, the value of ϕ must change fastest, too. This means that the

130 Chapter 10 Fitting

TABLE 10.1: Some implicit curves used in vision applications. Note that not all of
these curves are guaranteed to have any real points on them — e.g., x2+y2+1 = 0
doesn’t. Higher degree curves are seldom used because it can be difficult to get stable
fits to these curves.

Curve Equation

Line ax+ by + c = 0
Circle, center (a, b), x2 + y2 − 2ax− 2by + a2 + b2 − r2 = 0

and radius r
Ellipses ax2 + bxy + cy2 + dx+ ey + f = 0

(including circles) where
b2 − 4ac < 0

Hyperbolae ax2 + bxy + cy2 + dx+ ey + f = 0
where

b2 − 4ac > 0
Parabolae ax2 + bxy + cy2 + dx+ ey + f = 0

where
b2 − 4ac = 0

General conic sections ax2 + bxy + cy2 + dx+ ey + f = 0

normal at a point (u, v) is

(
∂ϕ

∂x
,
∂ϕ

∂y
),

evaluated at (u, v). If the tangent to the curve is T, then we must have T.s = 0.
Because we are working in 2D, we can determine the tangent from the normal, so
that we must have

ψ(u, v; dx, dy) =
∂ϕ

∂y
(u, v) {dx − u} −

∂ϕ

∂x
(u, v) {dy − v} = 0

at the point (u, v). We now have two equations in two unknowns and, in principle
can solve them. However, this is very seldom as easy as it looks, as Example ??
indicates.

The distance between a point and a conic
A conic section is given by ax2 + bxy + cy2 + dx+ ey + f = 0. Given a data

point (dx, dy), the nearest point on the conic satisfies two equations:

au2 + buv + cv2 + du+ ev + f =0

and

2(a− c)uv − (2ady + e)u+ (2cdx + d)v + (edx − ddy) =0.

There can be up to four real solutions of this pair of equations (in the exercises, you
are asked to demonstrate this, given an algorithm for obtaining the solutions, and
asked to sketch various cases). As an example, choose the ellipse 2x2 + y2 − 1 = 0,
which yields the equations

2u2 + v2 − 1 = 0 and 2uv − 4dyu+ 2dxv = 0.

Section 10.5 Fitting Curves 131

Four solutions
for nearest
point in this
range

Two solutions for y>1/2

Two solutions for y<-1/2

Four solutions
to minimum
distance for data
points inside
heavy curve

Two solutions
outside heavy
curve

FIGURE 10.11: On the left, the example worked in the text, where we study the
number of possible solutions for the distance between a point and an ellipse for data
points lying on the vertical axis. The figure on the right indicates the general case
for this ellipse.

Let us consider a family of data points (dx, dy) = (0, λ); then we can rearrange
these equations to get

2u2 + v2 − 1 = 0 and 2uv − 4λu = 2u(v − 2λ) = 0.

The second equation helps: Either u = 0 or v = 2λ. Two of our solutions will be
(0, 1), (0,−1). The other two are obtained by solving 2u2 +4λ2− 1 = 0, which has
solutions only if −1/2 ≤ λ ≤ 1/2. The situation is illustrated in Figure 10.11.

Approximations to the Distance Notice that for a relatively simple
curve, we already have an unpleasant problem to solve. A curve with a slightly
more complicated geometry — obtained by choosing ϕ to be a polynomial of higher
degree, say d — leads to openly nasty problems. This is because the closest point
on the curve would be obtained by solving two simultaneous polynomial equations,
both of degree d. It can be shown that this can lead to as many as d2 solutions,
which are usually hard to obtain in practice. Various approximations to the dis-
tance between a point and an implicit algebraic curve have come into practice.

The best known is algebraic distance: In this case, we measure the distance
between a curve and a point by evaluating the polynomial equation at that point,
that is, we make the approximation

distance between (dx, dy) and ϕ(x, y) = 0 = ϕ(dx, dy).

This approximation can be (rather roughly!) justified when the data points are
quite close to the curve. For a point sufficiently close to the curve and to first
order, ϕ(dx, dy) increases as (dx, dy) moves normal to the curve — because the
normal to the curve is given by the gradient of ϕ — and does not increase as
(dx, dy) moves tangent to the curve. One significant difficulty is that, as it stands,

132 Chapter 10 Fitting

algebraic distance is ill defined because many polynomials correspond to the same
curve. In particular, the curve given by µϕ(x, y) = 0 is the same as the curve given
by ϕ(x, y) = 0. This problem can be solved by normalizing the coefficients of the
polynomial in some way.

We have already seen one example of this process in Section 10.1, where we
fitted a line (ϕ(x, y) = ax + by + c = 0) to a set of points by minimizing the
algebraic distance subject to the constraint that a2 + b2 = 1. In this case, the
algebraic distance is the same as the actual distance. The choice of normalization
is important. For example, if we try to fit conics (ax2+bxy+cy2+dx+ey+f = 0)
using the constraint b = 1, we cannot fit circles. An alternative approximation is
to use

ϕ(dx, dy)

|∇ϕ(dx, dy)|
,

which has the advantage of not requiring a normalizing constant; in the case of
a line, this approximation is exact. Notice that this approximation has the same
properties as algebraic distance — it goes up as one moves along the normal, and
so on. The advantage of the approximation is that it is somewhat more accurate
than algebraic distance because it is normalised by the length of the normal. This
means that it can be read — roughly! — as giving the percentage distance along the
normal from the curve to the point. In practice, this approximation is seldom used
mainly because the use of algebraic distance yields simpler numerical problems.

Both of these approximations are dangerous because their behavior for data
points that are far from the curve is strange and not well understood. As a result,
the relationship between a fitted curve and a set of data points becomes a bit mys-
terious if the data points don’t lie close to a curve of that class. Algebraic distance
is used quite widely in practice because it yields easy numerical problems and can
be used for higher dimensional problems like approximating the distance between
points and implicit surfaces. The exact distance is often difficult to compute for
such problems.

10.5.2 Parametric Curves

The coordinates of a parametric curve are given as parametric functions of a pa-
rameter that varies along the curve. Parametric curves have the form

(x(t), y(t)) = (x(t; θ), y(t; θ)) t ∈ [tmin, tmax].

Table 10.2 shows the form of a variety of useful parametric curves.

The Distance from a Point to a Parametric Curve Assume we have
a data point (dx, dy). The closest point on a parametric curve can be identified by
its parameter value, which we shall write as τ . This point could lie at one or other
end of the curve. Otherwise, the vector from our data point to the closest point is
normal to the curve. This means that s(τ) = (dx, dy) − (x(τ), y(τ)) is normal to
the tangent vector, so that s(τ).T = 0. The tangent vector is

(
dx

dt
(τ),

dy

dt
(τ)),

Section 10.5 Fitting Curves 133

TABLE 10.2: A selection of parametric curves often used in vision applications. It
is quite common to put together a set of cubic curves, with constraints on their
coefficients such that they form a single continuous differentiable curve; the result
is known as a cubic spline.

Curves Parametric Form Parameters

Circles centered (r sin(t), r cos(t)) θ = r
at the origin t ∈ [0, 2π)

Circles (r sin(t) + a, r cos(t) + b) θ = (r, a, b)
t ∈ [0, 2π)

Axis aligned (r1 sin(t) + a, r2 cos(t) + b) θ = (r1, r2, a, b)
ellipses t ∈ [0, 2π)
Ellipses (cosϕ (r1 sin(t) + a)− sinϕ (r2 cos(t) + b) , θ = (r1, r2, a, b, ϕ)

sinϕ (r1 sin(t) + a) + cosϕ (r2 cos(t) + b)) t ∈ [0, 2π)
cubic segments (at3 + bt2 + ct+ d, et3 + ft2 + gt+ h) θ = (a, b, c, d, e, f, g, h)

t ∈ [0, 1]

which means that τ must satisfy the equation

dx

dt
(τ) {dx − x(τ)}+

dy

dt
(τ) {dy − y(τ)} = 0.

Now this is only one equation, rather than two, but the situation is not much better
than that for parametric curves. It is almost always the case that x(t) and y(t)
are polynomials because it is usually easier to do root finding for polynomials. At
worst, x(t) and y(t) are ratios of polynomials because we can rearrange the left-
hand side of our equation to come up with a polynomial in this case, too. However,
we are still faced with a possibly large number of roots.

There is a second difficulty that makes fitting to parametric curves unpopular.
Parametric curves with different coefficients may represent the same curve — for
example, the curve (x(t), y(t)) for t ∈ [0, 1] is the same as the curve (x(2t), y(2t))
for t ∈ [0, 1/2]. This situation can be very bad depending on the class of parametric
curves that we use.

