Image alignment

Source


http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/

Alignment: Fitting of transformations

* Previously: fitting a model to features in one image

M : :
« Given: points x4, ..., x,

* Find: model M that minimizes

Z residual(x;, M)
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Alignment: Fitting of transformations

* Previously: fitting a model to features in one image

M : :
« Given: points x4, ..., x,

* Find: model M that minimizes

Z residual(x;, M)

l

 Alignment: fitting a model to a transformation between pairs of
features (matches) in two images
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| . = . G.iven: matches (.xl,x{), ...,(x.n,.x,’,t.)
. o  Find: transformation T that minimizes
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Alignment: Fitting of transformations

« General problem:
« Compute the best transformation of a given class from one set of points to another

« Cases
« 2D points in images
« 3D points
» Different kinds of transformation
— Some allow closed form solutions
« With correspondences; without correspondences
* Robust transformations



Other registration applications

3D point clouds (depth sensors measure 3D position of points)
« Given a 3D model of an object, determine transformation from object to points
» Given two views (back and side, say) of object, align them

Localization

» Given a map of an environment, determine transformation from observations to map
 This tells you where you are
» Observations are 3D points, but could be more interesting

Mapping
» Given a bunch of observations from different locations, turn them into a map
* By registering them to one another

Calibrating a camera

« Camera sees a set of points on a known object; figure out a bunch of camera
parameters (later)



Alignment: Overview

 Motivation

* Fitting of transformations
 Affine transformations
« Homographies

* Robust alignment
« Descriptor-based feature matching
« RANSAC

» Large-scale alignment
 Inverted indexing
* Vocabulary trees



Alignment applications: Panorama stitching
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http://matthewalunbrown.com/autostitch/autostitch.html

Alignment applications: Instance recognition

Model images

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Alignment applications: Instance recognition
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https://arxiv.org/abs/1409.5400
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Alignment applications: Large-scale reconstruction

Pantheon: 1,032 images, 530,076 points Hall of Maps: 275 images, 230,182 points

S. Agarwal et al. Building Rome in a Day. ICCV 2009


https://grail.cs.washington.edu/rome/rome_paper.pdf

Feature-based alignment

* Find a set of of feature matches that agree in terms of:

a) Local appearance
b) Geometric configuration




Feature-based alignment really works!

Source: N. Snavely



Feature-based alignment really works!

Source: N. Snavely



Alignment: Overview

 Motivation

* Fitting of transformations
 Affine transformations
« Homographies



Alignment: Fitting of transformations

» Given: matches (xq,x1), ..., (X, x5,)
* Find: transformation T that minimizes

z residual (T (x;), x;)
i



2D transformation models

Euclidean (rotation, translation)

Similarity (translation, scale, rotation)

Affine

Projective (homography)




Transformations

Affine transformations transform y to x = My +t, where M has non-zero
determinant. Some kinds of affine transform have specialized names:

e Translation: when M is the identity.

e Rotation: when t = 0; M’ M is the identity and M has positive determi-
nant.

e Homogenous scaling: when M is o times the identity, and o # 0.
e Scaling: when M is diagonal.

e Euclidean or rigid body: when M” M is the identity and M has positive
determinant.



2D transformation models

Euclidean (rotation and translation)

A closed form solution to least squares problem is known. It's in the
notes. Won'’t do that here, as it's a bit elaborate.



2D transformation models

o Similarity
(translation,
scale, rotation)

* Projective
(homography)



Let’'s start with affine transformations

« Simple fitting procedure: linear least squares

« Approximates viewpoint changes for roughly planar objects
and roughly orthographic cameras

« Can be used to initialize fitting for more complex models




Fitting an affine transformation

* Assume we know the correspondences, how do we get the
transformation?
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Fitting an affine transformation

* Assume we know the correspondences, how do we get the
transformation?
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Fitting an affine transformation

 How many matches do we need to solve for the transformation
parameters?




Fitting a homography

* A homography is a plane projective transformation
(transformation taking a quad to another arbitrary quad)

-||ﬁ -




Homography in the real world

 The transformatlon between two V|ews of a planar surface

« The transformation between images from two cameras that
share the same center




Application: Panorama stitching

Source: Hartley & Zisserman



Projective transformations in general

Projective transformations are a new class. We will see much more of the
geometry underlying projective transformations later. A projective transformation
in NV dimensions is given by an N +1 x N + 1 dimensional matrix P with non-zero
determinant. There are a number of different ways of representing the effect of a
projective transformation. For now, we will write an N D projective transformation
as

m{ U1

( Mo ) . Homography is the case where N=2
Myt UN+1 my UN
m%_H UN+1

where M is N x N, and the vectors are N x 1. This transformation takes y to

m] y+my
m’II\}+1y+mN+1
mJy+ms
X = m’II\}+1y+mN+1

mjj\}y“l‘mN
L m71\}+1y+mN+1

Notice that there could be a divide by zero issue here. For the moment, we will
ignore this and assume it never happens. In fact, a great deal of interesting geometry
follows from paying attention to this issue, as we shall see in Chapter 34.2.



Fitting a homography

We now work with points on the plane, and allow the transformation to be a
homography. Solving for a homography requires solving an optimization problem,
but estimating a homography from data is useful, and relatively easy to do. We
can’t recover the translation component from centers of gravity (exercises TODO:
homography exercise ). Write m;; for the 7, j'th element of matrix M. In affine
coordinates, a homography M will map y; = (¥; 2, ¥iy) to xX; = (; 4, z;,) Where

M11Yie + M12Yiy + M3 M1 Yix + MoY;  + Mog
Tir — and z; , = (12.14)
M31Yi,x + M32Y; y + M33 M31Yi,x + M32Yi y + M33




Fitting a homography

Write M(y) for the result of applying the homography to y as above. In most
cases of interest, the coordinates of the points are not measured precisely, so we
observe x; = M(y;) + &, where & is some noise vector drawn from an isotropic
normal distribution with mean 0 and covariance . Again, assume that the noise is
isotropic, and so that ¥ = ¢?Z. The homography can be estimated by minimizing
the negative log-likelihood of the noise, so we must minimize

Z wi&] & (12.15)

where
M11Yi,z +M12Yi,4+M13

T
f' . 1,T m31Yi,z +M32Yi,y+M33 (12 16)
i = M21Yi z+M22Yi y+Mmas '

;l/'- —
LY m31Yi,z+mM32Yi,y+m33

using standard methods (Levenberg-Marquardt is favored; Chapter 34.2). This
approach is sometimes known as maxrimum likelthood . Experience teaches that
this optimization is not well behaved without a strong start point.



Fitting a homography: finding a start point

Remember

M21Yix T T22Y4y T 1123
m31Yi,z + 1M32Yi,y T+ 133

M11Yi,z + M12Yiy T 113
Tiqg = and ;4 =
m31Yix T M32Y4,y T 17133

So that Known

Known
— 7 /

Ti2(M31Yie + M32Yiy +M33) — M11Yi e + M12Yiy + M1z =0

and KHOWH Known
// !

Liy 777311]2 T T 77232/2 y T 77233) — M21Yi gz T M22Yj y T+ 23 = 0



Fitting a homography: finding a start point

T2 (M31Yi z + M32Yiy + M33) — M11Yi z + M12Ysy + M3 = 0
and

T 4 (M31Yi x + M32Yi gy + M33) — M21Yi gz + Masy;y + Moz =0

Each corresponding pair of points yields two homogenous equations

Total of 9 unknowns — can solve up to scale with 4 pairs
But scaling a projective transformation doesn’t change the tx!



Scaling doesn’t change projective transformation

Mm11Yiz + M12Y4y T 113 Ma21Yi .z + M22Yiy T+ 123
Tix = and ;4 =

mM31Yi,x T M32Y;y T 17233 m31Yiz T M32Y4y T 1133



Fitting a homography

* Recall:
_ax+by+c , dx+ey+f
Cgx+hy+i’ Y T gx+hy +i
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Alignment: Overview

 Motivation

* Fitting of transformations
« Affine transformations
« Homographies

* Robust alignment

» Descriptor-based feature matching
« RANSAC



Robust feature-based alignment

« So far, we've assumed that we are given a set of
correspondences between the two images we want to align

« What if we don’t know the correspondences?

(%) o



Robust feature-based alignment

« So far, we've assumed that we are given a set of
correspondences between the two images we want to align

« What if we don’t know the correspondences?




Robust feature-based alignment




Robust feature-based alignment

 Extract features



Robust feature-based alignment

« Extract features
« Compute putative matches



Robust feature-based alignment

« Extract features
« Compute putative matches
 Loop:

* Hypothesize transformation T



Robust feature-based alignment

« Extract features
« Compute putative matches
 Loop:
* Hypothesize transformation T
» Verify transformation (search for other matches consistent with T')



Robust feature-based alignment

« Extract features
« Compute putative matches
 Loop:

* Hypothesize transformation T
» Verify transformation (search for other matches consistent with T')



Generating putative correspondences




Generating putative correspondences

© I 6

feature feature
descriptor descriptor

* Need to compare feature descriptors of local patches
surrounding interest points



Feature descriptors

« Recall: feature detection vs. feature description




Comparing feature descriptors

« Simplest descriptor: vector of raw intensity values

 How to compare two such vectors u and v?
« Sum of squared differences (SSD):

SSD (1, 1) = 2 (u; — v;)?

 Normalized correlation: dot product between u and v normalized to
have zero mean and unit norm:

2i(u; —w)(v; — D)
\/(Zj(uj - )?)(X;(v; —9)?)

« Why would we prefer normalized correlation over SSD?

p(u,v) =




Disadvantage of intensity vectors as descriptors

« Small deformations can affect the matching score a lot




Feature descriptors: SIFT

* Descriptor computation:
« Divide patch into 4x4 sub-patches
« Compute histogram of gradient orientations (8 reference angles)

inside each sub-patch
* Resulting descriptor: 4x4x8 = 128 dimensions

~ Yy
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David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Feature descriptors: SIFT

* Descriptor computation:

« Divide patch into 4x4 sub-patches

« Compute histogram of gradient orientations (8 reference angles)
inside each sub-patch

* Resulting descriptor: 4x4x8 = 128 dimensions

« What are the advantages of SIFT descriptor over raw pixel
values”?
» Gradients are less sensitive to illumination change

« Pooling of gradients over the sub-patches achieves robustness to
small shifts, but still preserves some spatial information

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Generating putative correspondences

* For each patch in one image, find a short list of patches in the
other image that could match it based solely on appearance




Rejection of ambiguous matches

* How can we tell which putative matches are more reliable?

 Heuristic: compare distance of nearest neighbor to that of
second nearest neighbor

Source: Y. Furukawa



Rejection of ambiguous matches

 How can we tell which putative matches are more reliable?

» Heuristic: compare distance of nearest neighbor to that of
second nearest neighbor

« Ratio of closest distance to second-closest distance will be high for
features that are not distinctive
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David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Robust alignment

« Even after filtering out ambiguous matches, the set of
putative matches still contains a very high percentage of
outliers

« Solution: RANSAC
« RANSAC loop:

Randomly select a seed group of matches
Compute transformation from seed group
Find inliers to this transformation

If the number of inliers is sufficiently large, re-compute least-squares
estimate of transformation on all of the inliers

« Atthe end, keep the transformation with the largest number of inliers

B wn =



RANSAC example: Translation
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RANSAC example: Translation

Select one match, count inliers




RANSAC example: Translation

Select one match, count inliers




RANSAC example: Translation
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Select translation with the most inliers




Alternative to RANSAC: Voting

* A single SIFT match can vote for translation, rotation, and
scale parameters of a transformation between two images
* Votes are accumulated in a 4D coarsely discretized parameter space

» Clusters of matches falling into the same bin undergo a more precise
verification procedure

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Other strategies if you don’t know correspondence

Iterated closest points:
Start with some transformation

lterate:
» For each point in transformed source, find nearest neighbor in target
» Reestimate transformation using those correspondences
» Apply new transform to transformed source



Robust alignment




Robust feature-based alignment

« So far, we've assumed that we are given a set of
correspondences between the two images we want to align

 What if there are outliers?

(%) o



Robustness is a serious problem
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FIGURE 10.6: On the left, a synthetic dataset with one independent and one ez-
planatory variable, with the regression line plotted. Notice the line is close to the
data points, and its predictions seem likely to be reliable. On the right, the result of
adding a single outlying datapoint to that dataset. The regression line has changed
significantly, because the regression line tries to minimize the sum of squared verti-
cal distances between the data points and the line. Because the outlying datapoint is
far from the line, the squared vertical distance to this point is enormous. The line
has moved to reduce this distance, at the cost of making the other points further
from the line.



Key issue:

® Squaring a large number produces a huge number
¢ A few wildly mismatched points can throw off alignment

® Fixes:
® remove matches with “large” distances
® actually, quite good
® but what happens if new such pairs emerge?
® apply a robust loss

® minimize Z p([XZ B MYz B t]T [Xz' — MY’L — t])

1



More robust loss functions
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An affine transformation, harder linear algebra

In the simplest case, the correspondence is known — perhaps ) consists of beacons
and X of observations — and the only noise is Gaussian (so N = M). We will
assume the noise is isotropic, which is by far the most usual case. Once you have
followed this derivation, you will find it easy to incorporate a known covariance
matrix. We have

where &; is the value of a normal random variable with mean 0 and covariance matrix
¥ = 02Z. A natural procedure to estimate M and t is to maximize the likelihood
of the noise. Because it will be useful later, we assume that there is a weight w; for
each pair, so the negative log-likelihood we must minimize is proportional to

Z w; (x; — My; —t)" (x; — My; —t) (12.2)

Weights (assume known)



An affine transformation, harder linear algebra

We obtain M by minimizing

sz — Mv)" (0 = Mv;). (12.6)
Now write W = diag ([w1,...,wn]), U = [uy,...,uy] (and so on). You should
check that the objective can be rewritten as Trace=sum of diagonal elements
Tr (U — MV)YIW(U — MV)). (12.7)
Check this!

Now the trace is linear; U7 is constant; and Tr (ABC) = Tr (BC.A) = Tr (CAB)
(check this by writing it out, and remember it; it’s occasionally useful; more in
Section 34.2). This means the cost is equivalent to

Tr (2MVWU" + M MYWVT) And this!  (12.8)

which will be minimized when
MuwvT = ywy™ This is the same solution we had before

(which you should check). Many readers will recognize a least squares solution here.



An affine transformation, harder linear algebra

The translation is easy to estimate
(difference between weighted centers of gravity)

lem). The gradient of this cost with respect to t is

—2> " w; (xi — My; — t) (12.3)

which vanishes at the solution. In turn, if ) . w;x; = ), w;My;, t = 0. One
straightforward way to achieve this is to ensure that both the observations and the
reference points have a center of gravity at the origins. Write

- Wi X
_ ZZM (12.4)

for the center of gravity of the observations (etc.) Now form

Cz

u; = X; —Cg and v; = y; — Cy (12.5)



An affine transformation, harder linear algebra

We obtain M by minimizing
sz — Mv)" (0 = Mv;). (12.6)
Now write W = diag ([w1,...,wn]), U = [uy,...,uy] (and so on). You should
check that the objective can be rewritten as
Tr (U — MV)YIW(U — MV)). (12.7)

Now the trace is linear; 47U is constant; and Tr (ABC) = Tr (BC.A) = Tr (CAB)
(check this by writing it out, and remember it; it’s occasionally useful; more in

Section 34.2). This meéfaﬁ@etcp@ngquingfgtﬂts Source points

| \
Tr (—2AT4VWL{T + ME Mywpt (12.8)
What we want
which will be minimized when
MVWVT = ywut (12.9)

(which you should check). Many readers will recognize a least squares solution here.



Robust alignment

Iteratively reweighted least squares:

iterate:
« Align using weights
« Adjust weights

But how?
Using a robust loss

minimize

But how? ZP([XZ' B /\/lyz' - t]T [Xz' — /\/lyz- — t])



More robust loss functions
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Analogy

Weighted least squares minimizes:
Zwi xi — Myi —t]" [x; — My, — t])

So at a solution
Z’U}i [Xz' —/\/lyi —t] =0
Robust loss minimizes:
> p(lxi = My — t]' [xi — My, — t])
So at a solution

Zp’[xz-—/\/lyi—t]:()

7



Analogy

Weighted least squares minimizes:

Zwi x; — My; —t]" [x; — My; —t])

So at a solution
Z’U}i [Xz' —/\/lyi —t] =0
Robust loss minimizes:
> p(lxi = My; —t]" [xi — My — t])
So at a solution

Zp’[xz-—/\/lyi—t]:()

7



|dea

Iteratively reweighted least squares:

start with weights=1

iterate:
« Align using weights
« Set weights to ,0;

Any solution to a robust loss will certainly be a stationary point of this
iteration



Example:

Robust loss is absolute value, so

p([x; — My; —t]" [x; — My, —t]) = abs([x; — My; —t])

Write s for squared distance

We have



What happens in iteration?

lterate
compute weighted transformation
If transformed source point is close to target, weight pair up
If transformed source point is far from target, weight pair down

If transformed target lies on source, divide by zero!



Alignment: Overview

 Motivation

* Fitting of transformations
« Affine transformations
« Homographies
* Robust alignment
« Descriptor-based feature matching
« RANSAC
» Large-scale alignment
* Inverted indexing
* Vocabulary trees



Scalability: Alignment to large databases

* What if we need to align a test image with thousands or
millions of images in a model database?

 Efficient putative match generation: approximate descriptor similarity
search, inverted indices

T
N~ A
o
Model -
database

~




Large-scale visual search

Model images

3
or exemplars @
4

Inverted indexing
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Figure from: Kristen Grauman and Bastian Leibe, Visual Object Recognition, Synthesis Lectures on Artificial
Intelligence and Machine Learning, April 2011, Vol. 5, No. 2, pp. 1-181



http://dx.doi.org/10.2200/S00332ED1V01Y201103AIM011

How to do the indexing?

Model images

3
or exemplars </v2>
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Input features in Local feature descriptors Candidate matches based
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» |dea: find a set of visual codewords to which descriptors can be quantized



Recall: Visual codebook for implicit shape models
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http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Algorithm: K-means

Procedure: 10.1 K-Means Clustering

Choose k. Now choose k data points c; to act as cluster centers. Until
the cluster centers change very little

e Allocate each data point to cluster whose center is nearest.

e Now ensure that every cluster has at least one data point; one
way to do this is by supplying empty clusters with a point chosen
at random from points far from their cluster center.

e Replace the cluster centers with the mean of the elements in their
clusters.




K-means example
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http://shabal.in/visuals/kmeans/1.html

How to do the indexing?

Model images

3
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» |dea: find a set of visual codewords to which descriptors can be quantized



K-means: Issue

You have to find the closest cluster center for each data item

What if dataset is huge?

« Subsample, cluster sampled dataset, use cluster centers from this
* This turns out to work well and save a lot of time

What if the number of cluster centers is huge?
» This could happen for the extreme matching application here

* lIdea:
 Hierarchy of cluster centers — hierarchical k-means

« Make a tree whose leaves contain the images that have this codeword



Hierarchical k-means clustering

Dataset is: feature descriptors
Hierarchical k-means(dataset)

+ |f dataset isn’t too small

* Choose a small k1

» Cluster the feature descriptors (or a sampled subset) to k1 cluster centers

» Return ((cluster center 1, (hierarchical k-means (data that went to 1))),
(cluster center 2, (hierarchical k-means (data that went to 2))),...

)
 Else
 Return leaf



Hierarchical k-means
clustering of .
descriptor space
(vocabulary tree) Slide credit: D. Nister



Setting up a vocabulary tree

We want to register to images from a very large set.

Do hierarchical k-means on feature descriptors from (some of) that set

Now for each image:
find all feature descriptors
walk the tree to find the leaf corresponding to each descriptor
insert image pointer into that leaf



Registering with a vocabulary tree

Find local feature descriptors for image you want to register to collection

Construct a set of plausible targets by:
Start with empty set
For each feature descriptor,
walk the tree and collect images in its leaf
insert into set of targets

Now register to each of this set of targets
Accept registration attempts that have low error



