
C H A P T E R 20

Light and Surfaces

20.1 SIMPLE RADIOMETRY

TODO: Radiance; Irradiance; Radiosity; BRDF

20.2 LIGHT AND SURFACES

Three major phenomena determine the brightness of a pixel: the response of the
camera to light, the fraction of light reflected from the surface to the camera, and
the amount of light falling on the surface. Each can be dealt with quite straight-
forwardly.

Camera response: Modern camera sensors respond linearly to light. This
linear response is adjusted in software, because humans find linear images confusing
(such images tend to be too dark in most places, and too light in others). The cam-
era response function or CRF determines what value is reported at each location.
Typical CRF’s are close to linear in mid-ranges, but have pronounced nonlinearities
for darker and brighter illumination. This allows the camera to reproduce the very
wide dynamic range of natural light without saturating.

Write X for a point in space that projects to x in the image, Ipatch(X) for
the intensity of the surface patch at X, C(·) for the camera response function, and
Icamera(x) for the camera response at x. Then our model is:

Icamera(x) = C(Ipatch(x)).

It is quite usual to assume that the camera response is linearly related to the
intensity of the surface patch. In this case, C(Ipatch(x)) = kIpatch(x), and it is
common to assume that k is known if needed. A CRF can be recovered from
enough image data, if required (Section 20.2.1).

Surface reflection: Different points on a surface may reflect more or less
of the light that is arriving. Darker surfaces reflect less light, and lighter surfaces
reflect more. There is a rich set of possible physical effects, but most can be ignored.
Section 20.1.1 describes the relatively simple model that is sufficient for almost all
purposes in computer vision.

Illumination: The amount of light a patch receives depends on the overall
intensity of the light, and on the geometry. The overall intensity could change
because some luminaires (the formal term for light sources) might be shadowed, or
might have strong directional components. Geometry affects the amount of light
arriving at a patch because surface patches facing the light collect more radiation
and so are brighter than surface patches tilted away from the light, an effect known
as shading. Section 20.1.2 describes the most important model used in computer
vision; Section 20.1.4 describes a much more complex model that is necessary to
explain some important practical difficulties in shading inference.
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192 Chapter 20 Light and Surfaces

20.2.1 Reflection at Surfaces

Most surfaces reflect light by a process of diffuse reflection. Diffuse reflection scat-
ters light evenly across the directions leaving a surface, so the brightness of a diffuse
surface doesn’t depend on the viewing direction. Examples are easy to identify with
this test: most cloth has this property, as do most paints, rough wooden surfaces,
most vegetation, and rough stone or concrete. The only parameter required to
describe a surface of this type is its albedo, the fraction of the light arriving at the
surface that is reflected. This does not depend on the direction in which the light
arrives or the direction in which the light leaves. Surfaces with very high or very
low albedo are difficult to make. For practical surfaces, albedo lies in the range
0.05 – 0.90 (see ?, who argue the dynamic range is closer to 10 than the 18 implied
by these numbers). Mirrors are not diffuse, because what you see depends on the
direction in which you look at the mirror. The behavior of a perfect mirror is known
as specular reflection. For an ideal mirror, light arriving along a particular direction
can leave only along the specular direction, obtained by reflecting the direction of
incoming radiation about the surface normal (Figure 20.1). Usually some fraction
of incoming radiation is absorbed; on an ideal specular surface, this fraction does
not depend on the incident direction.

If a surface behaves like an ideal specular reflector, you could use it as a
mirror, and based on this test, relatively few surfaces actually behave like ideal
specular reflectors. Imagine a near perfect mirror made of polished metal; if this
surface suffers slight damage at a small scale, then around each point there will be
a set of small facets, pointing in a range of directions. In turn, this means that
light arriving in one direction will leave in several different directions because it
strikes several facets, and so the specular reflections will be blurred. As the surface
becomes less flat, these distortions will become more pronounced; eventually, the
only specular reflection that is bright enough to see will come from the light source.
This mechanism means that, in most shiny paint, plastic, wet, or brushed metal
surfaces, one sees a bright blob—often called a specularity—along the specular di-
rection from light sources, but few other specular effects. Specularities are easy to
identify, because they are small and very bright (Figure 20.1; ?). Most surfaces re-
flect only some of the incoming light in a specular component, and we can represent
the percentage of light that is specularly reflected with a specular albedo. Although
the diffuse albedo is an important material property that we will try to estimate
from images, the specular albedo is largely seen as a nuisance and usually is not
estimated.

For almost all purposes, it is enough to model all surfaces as being diffuse
with specularities. This is the lambertian+specular model. Specularities are rela-
tively seldom used in inference, and so there is no need for a formal model of their
structure. Because specularities are small and bright, they are relatively easy to
identify and remove with straightforward methods (find small bright spots, and
replace them by smoothing the local pixel values). More sophisticated specularity
finders use color information []. Thus, to apply the lambertian+specular model,
we find and remove specularities, and then use Lambert’s law (Section 20.1.2) to
model image intensity.
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FIGURE 20.1: The two most important reflection modes for computer vision are
diffuse reflection (left), where incident light is spread evenly over the whole hemi-
sphere of outgoing directions, and specular reflection (right), where reflected light
is concentrated in a single direction. The specular direction S is coplanar with the
normal and the source direction (L), and has the same angle to the normal that
the source direction does. Most surfaces display both diffuse and specular reflection
components. In most cases, the specular component is not precisely mirror like, but
is concentrated around a range of directions close to the specular direction (lower
right). This causes specularities, where one sees a mirror like reflection of the light
source. Specularities, when they occur, tend to be small and bright. In the photo-
graph, they appear on the metal spoon and on the plate. Large specularities can
appear on flat metal surfaces (arrows). Most curved surfaces (such as the plate)
show smaller specularities. Most of the reflection here is diffuse; some cases are
indicated by arrows. Martin Brigdale c○ Dorling Kindersley, used with permission.

20.2.2 Sources and Their Effects

The main source of illumination outdoors is the sun, whose rays all travel parallel
to one another in a known direction because it is so far away. We model this
behavior with a distant point light source. This is the most important model of
lighting (because it is like the sun and because it is easy to use), and can be quite
effective for indoor scenes as well as outdoor scenes. Because the rays are parallel
to one another, a surface that faces the source cuts more rays (and so collects more
light) than one oriented along the direction in which the rays travel. The amount
of light collected by a surface patch in this model is proportional to the cosine of
the angle θ between the illumination direction and the normal (Figure 20.2). The
figure yields Lambert’s cosine law, which states the brightness of a diffuse patch
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illuminated by a distant point light source is given by

I = ρI0 cos θ,

where I0 is the intensity of the light source, θ is the angle between the light source
direction and the surface normal, and ρ is the diffuse albedo. This law predicts that
bright image pixels come from surface patches that face the light directly and dark
pixels come from patches that see the light only tangentially, so that the shading
on a surface provides some shape information. We explore this cue in Section ??.

If the surface cannot see the source, then it is in shadow. Since we assume
that light arrives at our patch only from the distant point light source, our model
suggests that shadows are deep black; in practice, they very seldom are, because
the shadowed surface usually receives light from other sources. Outdoors, the most
important such source is the sky, which is quite bright. Indoors, light reflected from
other surfaces illuminates shadowed patches. This means that, for example, we tend
to see few shadows in rooms with white walls, because any shadowed patch receives
a lot of light from the walls. These effects are sometimes modelled by adding a
constant ambient illumination term to the predicted intensity. The ambient term
ensures that shadows are not too dark, but this is not a particularly good model of
the spatial properties of interreflections. We have sketched the effects to be aware
of in Section 20.1.4.

20.2.3 The Local Shading Model for Distant Luminaires

Surfaces reflect light onto one another (interreflections), meaning that the light
arriving at a surface could have come directly from a luminaire, but it could also
have been reflected from some other surface. Really accurate physical models of how
light is distributed on scenes are now very well known [?] and are extremely useful
in computer graphics. These models are very hard to use for inference, because
every variable affects every other variable. For example, changes in the orientation
of one surface element affect how much light it reflects onto every other surface
element.

This means we must simplify the model, and so we must be using a model
that isn’t exact, meaning we need to keep track of what that model will do well
and what it will do badly. The usual simplification is a local shading model, where
we assume that shading is caused only by light that comes from the luminaire (i.e.,
that there are no interreflections).

Now assume that the luminaire is an infinitely distant source. For this case,
write N(x) for the unit surface normal at x, S for a vector pointing from x toward
the source with length Io (the source intensity), ρ(x) for the albedo at x, and
V is(S,x) for a function that is 1 when x can see the source and zero otherwise.
Then, the intensity at x is

I(x) = ρ(x) (N · S)Vis(S, x) + ρ(x)A + M

Image = Diffuse + Ambient + Specular (mirror-like)
intensity term term term
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FIGURE 20.2: The orientation of a surface patch with respect to the light affects
how much light the patch gathers. We model surface patches as illuminated by a
distant point source, whose rays are shown as light arrowheads. Patch A is tilted
away from the source (θ is close to 900) and collects less energy, because it cuts
fewer light rays per unit surface area. Patch B, facing the source (θ is close to
00), collects more energy, and so is brighter. Shadows occur when a patch cannot
see a source. The shadows are not dead black, because the surface can see inter-
reflected light from other surfaces. These effects are shown in the photograph. The
darker surfaces are turned away from the illumination direction. Martin Brigdale
c○ Dorling Kindersley, used with permission.

20.2.4 Qualitative Effects of Area Sources

The local shading model is a good rough and ready model, but it isn’t right. It
predicts dark shadows with sharp boundaries. These are quite common outdoors
where the sun is the most important light source, but are uncommon indoors. To
understand why, we must look at area sources.

TODO: More material on radiometry of area sources

An area source is an area that radiates light. Area sources occur quite com-
monly in natural scenes—an overcast sky is a good example—and in synthetic
environments—for example, the fluorescent light boxes found in many industrial
ceilings. Area sources are common in illumination engineering, because they tend
not to cast strong shadows and because the illumination due to the source does not
fall off significantly as a function of the distance to the source. Detailed models
of area sources are complex, but a simple model is useful to understand shadows.
Shadows from area sources are very different from shadows cast by point sources.
One seldom sees dark shadows with crisp boundaries indoors. Instead, one could
see no visible shadows, or shadows that are rather fuzzy diffuse blobs, or sometimes
fuzzy blobs with a dark core (Figure 20.3). These effects occur indoors because
rooms tend to have light walls and diffuse ceiling fixtures, which act as area sources.
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FIGURE 20.3: Area sources generate complex shadows with smooth boundaries, be-
cause from the point of view of a surface patch, the source disappears slowly behind
the occluder. Left: a photograph, showing characteristic area source shadow effects.
Notice that A is much darker than B; there must be some shadowing effect here,
but there is no clear shadow boundary. Instead, there is a fairly smooth gradient.
The chair leg casts a complex shadow, with two distinct regions. There is a core
of darkness (the umbra—where the source cannot be seen at all) surrounded by a
partial shadow (penumbra— where the source can be seen partially). A good model
of the geometry, illustrated right, is to imagine lying with your back to the surface
looking at the world above. At point 1, you can see all of the source; at point 2,
you can see some of it; and at point 3, you can see none of it. Peter Anderson c○
Dorling Kindersley, used with permission.

As a result, the shadows one sees are area source shadows.

To compute the intensity at a surface patch illuminated by an area source, we
can break the source up into infinitesimal source elements, then sum effects from
each element. If there is an occluder, then some surface patches may see none of
the source elements. Such patches will be dark, and lie in the umbra (a Latin word
meaning “shadow”). Other surface patches may see some, but not all, of the source
elements. Such patches may be quite bright (if they see most of the elements), or
relatively dark (if they see few elements), and lie in the penumbra (a compound of
Latin words meaning “almost shadow”). One way to build intuition is to think of
a tiny observer looking up from the surface patch. At umbral points, this observer
will not see the area source at all whereas at penumbral points, the observer will see
some, but not all, of the area source. An observer moving from outside the shadow,
through the penumbra and into the umbra will see something that looks like an
eclipse of the moon (Figure 20.3). The penumbra can be large, and can change quite
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FIGURE 20.4: The photograph on the left shows a room interior. Notice the lighting
has some directional component (the vertical face indicated by the arrow is dark,
because it does not face the main direction of lighting), but there are few visible
shadows (for example, the chairs do not cast a shadow on the floor). On the right,
a drawing to show why; here there is a small occluder and a large area source. The
occluder is some way away from the shaded surface. Generally, at points on the
shaded surface the incoming hemisphere looks like that at point 1. The occluder
blocks out some small percentage of the area source, but the amount of light lost is
too small to notice (compare figure 20.3). Jake Fitzjones c○ Dorling Kindersley,
used with permission.

slowly from light to dark. There might even be no umbral points at all, and, if the
occluder is sufficiently far away from the surface, the penumbra could be very large
and almost indistinguishable in brightness from the unshadowed patches. This is
why many objects in rooms appear to cast no shadow at all (Figure 20.4).

20.3 INFERENCE FROM SIMPLE SHADING MODELS

20.3.1 Radiometric Calibration and High Dynamic Range Images

The intensity of light travelling through a point in space in some direction is rep-
resented with a unit known as radiance. The intensity of light arriving at a point
on a surface averaged over some range of directions is known as irradiance. Sensors
average the irradiance over the area of a pixel to obtain incoming power E. This
power is summed for some time period ∆t to obtain the amount of energy the pixel
receives. In turn, the energy determines the pixel intensity value reported by the
imaging system. A property called reciprocity means that the response is a function
of E∆t alone. In particular, we will get the same outcome if we image one patch
of intensity E for time ∆t and another patch of intensity E/k for time k∆t. The
actual response that the sensor produces is a function of E∆t. Determining this
function from data is known as radiometric calibration.

Radiometric calibration has a number of applications. For example, we might
want to compare renderings of a scene with pictures of the scene, and to do that we
need to work in real radiometric units and so must calibrate the camera radiomet-
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rically. We might want to use pictures of a scene to estimate the lighting in that
scene so we can postrender new objects into the scene, which would need to be lit
correctly. Again, we would need to use radiometric units and so need to calibrate
the camera.

Likely the most important application is high dynamic range imaging or HDR
imaging. Many scenes have bright spots that are very much brighter than the dark
spots. The dynamic range is the ratio of brightest to darkest spot. The camera
response function (CRF) is typically somewhat linear over some range, and sharply
non-linear near the top and bottom of this range, so that the camera can capture
very dark and very light patches without saturation. However, it is quite easy to
find scenes where the dynamic range is so big that images in a reasonable camera
loses information. Either the brightest points are saturated or the darkest points
are very close to zero. In either case, color and relative intensity information is lost.
However, if we have multiple images of the scene, obtained with different values of
∆t, then we can recover information that would otherwise be lost. Using a small
∆t will allow very bright locations to be measured accurately (though mid range
locations will be dark, and dark locations will be lost). Using a large ∆t will allow
very dark locations to be measured accurately (though mid range locations will
be bright, and bright locations will be lost). If the CRF is known, then for each
location at each ∆ti we can compute the value of E∆ti and so recover E for each
location exactly.

Now assume we have multiple registered images, each obtained using a dif-

ferent exposure time. At the i, j’th pixel, we know the image intensity value I
(k)
ij

for the k’th exposure time, we know the value of the k’th exposure time ∆tk, and
we know that the intensity of the corresponding surface patch Eij is the same for
each exposure, but we do not know the value of Eij . Write the camera response
function f , so that

I
(k)
ij = f(Eij∆tk).

There are now several possible approaches to solve for f . We could assume a
parametric form—say, polynomial—then solve using least squares. Notice that we
must solve not only for the parameters of f , but also for Eij . For a color camera,
we solve for calibration of each channel separately. ? have studied the polynomial
case in detail. Though the solution is not unique, ambiguous solutions are strongly
different from one another, and most cases are easily ruled out. Furthermore, one
does not need to know exposure times with exact accuracy to estimate a solution,
as long as there are sufficient pixel values; instead, one estimates f from a fixed set
of exposure times, then estimates the exposure times from f , and then re-estimates.
This procedure is stable.

Alternatively, because the camera response is monotonic, we can work with
its inverse g = f−1, take logs, and write

log g(I
(k)
ij ) = logEij + log∆tk.

We can now estimate the values that g takes at each point and the Eij by placing
a smoothness penalty on g. In particular, we minimize∑

i,j,k

(log g(I
(k)
ij )− (logEij + log∆tk))

2 + smoothness penalty on g
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FIGURE 20.5: It is possible to calibrate the radiometric response of a camera from
multiple images obtained at different exposures. The top row shows four different
exposures of the same scene, ranging from darker (shorter shutter time) to lighter
(longer shutter time). Note how, in the dark frames, the lighter part of the image
shows detail, and in the light frames, the darker part of the image shows detail; this
is the result of non-linearities in the camera response. On the bottom left, we
show the inferred calibration curves for each of the R, G, and B camera channels.
On the bottom right, a composite image illustrates the results. The dynamic
range of this image is far too large to print; instead, the main image is normalized
to the print range. Overlaid on this image are boxes where the radiances in the box
have also been normalized to the print range; these show how much information is
packed into the high dynamic range image.

by choice of g. ? penalize the second derivative of g. Once we have a radio-
metrically calibrated camera, estimating a high dynamic range image is relatively
straightforward. We have a set of registered images, and at each pixel location,
we seek the estimate of radiance that predicts the registered image values best. In
particular, we assume we know f . We seek an Eij such that∑

k

w(Iij)(I
(k)
ij − f(Eij∆tk))

2

is minimized. Notice the weights because our estimate of f is more reliable when
Iij is in the middle of the available range of values than when it is at larger or
smaller values.

20.3.2 Inferring Lightness and Illumination

If we could estimate the albedo of a surface from an image, then we would know a
property of the surface itself, rather than a property of a picture of the surface. Such
properties are often called intrinsic representations. They are worth estimating,
because they do not change when the imaging circumstances change. It might seem
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that albedo is difficult to estimate, because there is an ambiguity linking albedo
and illumination; for example, a high albedo viewed under middling illumination
will give the same brightness as a low albedo viewed under bright light. However,
humans can report whether a surface is white, gray, or black (the lightness of the
surface), despite changes in the intensity of illumination (the brightness). This skill
is known as lightness constancy. There is a lot of evidence that human lightness
constancy involves two processes: one process compares the brightness of various
image patches and uses this comparison to determine which patches are lighter and
which darker; the second establishes some form of absolute standard to which these
comparisons can be referred (e.g. ?).

It is worth reviewing early algorithms for estimating lightness briefly, because
the underlying principles remain useful. These algorithms were developed in the
context of simple scenes. In particular, we assume that the scene is flat and frontal;
that surfaces are diffuse, or that specularities have been removed; and that the
camera responds linearly. In this case, the camera response C at a point x is the
product of an illumination term, an albedo term, and a constant that comes from
the camera gain:

C(x) = kcI(x)ρ(x).

If we take logarithms, we get

logC(x) = log kc + log I(x) + log ρ(x).

We now make a second set of assumptions:

• First, we assume that albedoes change only quickly over space. This means
that a typical set of albedoes will look like a collage of papers of different grays.
This assumption is quite easily justified: There are relatively few continuous
changes of albedo in the world (the best example occurs in ripening fruit),
and changes of albedo often occur when one object occludes another (so we
would expect the change to be fast). This means that spatial derivatives of
the term log ρ(x) are either zero (where the albedo is constant) or large (at a
change of albedo).

• Second, illumination changes only slowly over space. This assumption is
somewhat realistic. For example, the illumination due to a point source will
change relatively slowly unless the source is very close, so the sun is a par-
ticularly good source for this method, as long as there are no shadows. As
another example, illumination inside rooms tends to change very slowly be-
cause the white walls of the room act as area sources. This assumption fails
dramatically at shadow boundaries, however. We have to see these as a spe-
cial case and assume that either there are no shadow boundaries or that we
know where they are.

These assumptions are sometimes called Mondrian world assumptions.
The earliest algorithm is the Retinex algorithm of ?; this took several forms,

most of which have fallen into disuse. The key insight of Retinex is that small
gradients are changes in illumination, and large gradients are changes in lightness.
We can use this by differentiating the log transform, throwing away small gradients,
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and integrating the results [?]. Doing this, or something like it, is widely known as
Retinex. There is a constant of integration missing, so lightness ratios are available,
but absolute lightness measurements are not. Figure ?? illustrates the process for
a one-dimensional example, where differentiation and integration are easy.

This approach can be extended to two dimensions as well. Differentiating
and thresholding is easy: at each point, we estimate the magnitude of the gradient;
if the magnitude is less than some threshold, we set the gradient vector to zero;
otherwise, we leave it alone. The difficulty is in integrating these gradients to get
the log albedo map. The thresholded gradients may not be the gradients of an
image because the mixed second partials may not be equal (integrability again;
compare with Section 20.2.3).

Form the gradient of the log of the image
At each pixel, if the gradient magnitude is below
a threshold, replace that gradient with zero

Reconstruct the log-albedo by solving the minimization
problem described in the text

Obtain a constant of integration
Add the constant to the log-albedo, and exponentiate

Algorithm 20.1: Determining the Lightness of Image Patches.

The problem can be rephrased as a minimization problem: choose the log
albedo map whose gradient is most like the thresholded gradient. This is a relatively
simple problem because computing the gradient of an image is a linear operation.
The x-component of the thresholded gradient is scanned into a vector p, and the y-
component is scanned into a vector q. We write the vector representing log-albedo
as l. Now the process of forming the x derivative is linear, and so there is some
matrix Mx, such that Mxl is the x derivative; for the y derivative, we write the
corresponding matrixMy.

The problem becomes finding the vector l that minimizes

| Mxl− p |2 + | Myl− q |2 .

This is a quadratic minimization problem, and the answer can be found by a linear
process. Some special tricks are required because adding a constant vector to l
cannot change the derivatives, so the problem does not have a unique solution. We
explore the minimization problem in the exercises.

The constant of integration needs to be obtained from some other assumption.
There are two obvious possibilities:

• we can assume that the brightest patch is white;

• we can assume that the average lightness is constant.

We explore the consequences of these models in the exercises.
More sophisticated algorithms are now available, but there were no quan-

titative studies of performance until recently. Grosse et al. built a dataset for
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FIGURE 20.6: Retinex remains a strong algorithm for recovering albedo from images.
Here we show results from the version of Retinex described in the text applied to
an image of a room (left) and an image from a collection of test images due to
?. The center-left column shows results from Retinex for this image, and the
center-right column shows results from a variant of the algorithm that uses color
reasoning to improve the classification of edges into albedo versus shading. Finally,
the right column shows the correct answer, known by clever experimental methods
used when taking the pictures. This problem is very hard; you can see that the
albedo images still contain some illumination signal. Part of this figure courtesy
Kevin Karsch, U. Illinois.

evaluating lightness algorithms, and show that a version of the procedure we de-
scribe performs extremely well compared to more sophisticated algorithms [?]. The
major difficulty with all these approaches is caused by shadow boundaries, which
we discuss in Section 22.2.1.

20.3.3 Photometric Stereo: Shape from Multiple Shaded Images

It is possible to reconstruct a patch of surface from a series of pictures of that
surface taken under different illuminants. First, we need a camera model. For
simplicity, we choose an orthographic camera situated so that the point (x, y, z) in
space is imaged to the point (x, y) in the camera (the method can be extended to
the other camera models described in Chapter ??).

In this case, to measure the shape of the surface, we need to obtain the
depth to the surface. This suggests representing the surface as (x, y, f(x, y))—a
representation known as a Monge patch after the French military engineer who first
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used it (Figure 20.7). This representation is attractive because we can determine a
unique point on the surface by giving the image coordinates. Notice that to obtain
a measurement of a solid object, we would need to reconstruct more than one patch
because we need to observe the back of the object.

x

y

height

Image
plane

direction
of projection

FIGURE 20.7: A Monge patch is a representation of a piece of surface as a height
function. For the photometric stereo example, we assume that an orthographic
camera—one that maps (x, y, z) in space to (x, y) in the camera—is viewing a
Monge patch. This means that the shape of the surface can be represented as a
function of position in the image.

Photometric stereo is a method for recovering a representation of the Monge
patch from image data. The method involves reasoning about the image intensity
values for several different images of a surface in a fixed view illuminated by different
sources. This method recovers the height of the surface at points corresponding to
each pixel; in computer vision circles, the resulting representation is often known
as a height map, depth map, or dense depth map.

Fix the camera and the surface in position, and illuminate the surface using
a point source that is far away compared with the size of the surface. We adopt a
local shading model and assume that there is no ambient illumination (more about
this later) so that the brightness at a point x on the surface is

B(x) = ρ(x)N(x) · S1,

where N is the unit surface normal and S1 is the source vector. We can write
B(x, y) for the radiosity of a point on the surface because there is only one point on
the surface corresponding to the point (x, y) in the camera. Now we assume that
the response of the camera is linear in the surface radiosity, and so have that the
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value of a pixel at (x, y) is

I(x, y) = kB(x)

= kB(x, y)

= kρ(x, y)N(x, y) · S1

= g(x, y) ·V1,

where g(x, y) = ρ(x, y)N(x, y) and V1 = kS1, where k is the constant connecting
the camera response to the input radiance.

FIGURE 20.8: Five synthetic images of a sphere, all obtained in an orthographic view
from the same viewing position. These images are shaded using a local shading
model and a distant point source. This is a convex object, so the only view where
there is no visible shadow occurs when the source direction is parallel to the viewing
direction. The variations in brightness occuring under different sources code the
shape of the surface.

In these equations, g(x, y) describes the surface, and V1 is a property of the
illumination and of the camera. We have a dot product between a vector field g(x, y)
and a vector V1, which could be measured; with enough of these dot products, we
could reconstruct g and so the surface.

Now if we have n sources, for each of which Vi is known, we stack each of
these Vi into a known matrix V, where

V =


VT

1

VT
2

. . .
VT

n

 .
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For each image point, we stack the measurements into a vector

i(x, y) = {I1(x, y), I2(x, y), . . . , In(x, y)}T .

Notice that we have one vector per image point; each vector contains all the image
brightnesses observed at that point for different sources. Now we have

i(x, y) = Vg(x, y),

and g is obtained by solving this linear system—or rather, one linear system per
point in the image. Typically, n > 3, so that a least-squares solution is appropriate.
This has the advantage that the residual error in the solution provides a check on
our measurements.

Substantial regions of the surface might be in shadow for one or the other
light (see Figure 20.8). We assume that all shadowed regions are known, and deal
only with points that are not in shadow for any illuminant. More sophisticated
strategies can infer shadowing because shadowed points are darker than the local
geometry predicts.

We can extract the albedo from a measurement of g because N is the unit
normal. This means that |g(x, y)|= ρ(x, y). This provides a check on our measure-
ments as well. Because the albedo is in the range zero to one, any pixels where
|g| is greater than one are suspect—either the pixel is not working or V is incor-
rect. Figure 20.9 shows albedo recovered using this method for the images shown
in Figure 20.8.
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FIGURE 20.9: The image on the left shows the magnitude of the vector field g(x, y)
recovered from the input data of Figure 20.8 represented as an image—this is the
reflectance of the surface. The center figure shows the normal field, and the right
figure shows the height field.

We can extract the surface normal from g because the normal is a unit vector

N(x, y) =
g(x, y)

|g(x, y)|
.

Figure 20.9 shows normal values recovered for the images of Figure 20.8.
The surface is (x, y, f(x, y)), so the normal as a function of (x, y) is

N(x, y) =
1√

1 + ∂f
∂x

2
+ ∂f

∂y

2

{
∂f

∂x
,
∂f

∂y
, 1

}T

.
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To recover the depth map, we need to determine f(x, y) from measured values of
the unit normal.

Obtain many images in a fixed view under different illuminants
Determine the matrix V from source and camera information

Inferring albedo and normal:
For each point in the image array that is not shadowed
Stack image values into a vector i
Solve Vg = i to obtain g for this point
Albedo at this point is |g|
Normal at this point is g

|g|
p at this point is N1

N3

q at this point is N2

N3

end

Check: is ( ∂p∂y −
∂q
∂x )

2 small everywhere?

Integration:
Top left corner of height map is zero
For each pixel in the left column of height map
height value = previous height value + corresponding q value

end
For each row
For each element of the row except for leftmost
height value = previous height value + corresponding p value

end
end

Algorithm 20.2: Photometric Stereo.

Assume that the measured value of the unit normal at some point (x, y) is
(a(x, y), b(x, y), c(x, y)). Then

∂f

∂x
=
a(x, y)

c(x, y)
and

∂f

∂y
=
b(x, y)

c(x, y)
.

We have another check on our data set, because

∂2f

∂x∂y
=

∂2f

∂y∂x
,

so we expect that

∂
(

a(x,y)
c(x,y)

)
∂y

−
∂
(

b(x,y)
c(x,y)

)
∂x

should be small at each point. In principle it should be zero, but we would have
to estimate these partial derivatives numerically and so should be willing to accept
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FIGURE 20.10: Photometric stereo could become the method of choice to capture com-
plex deformable surfaces. On the top, three images of a garment, lit from different
directions, which produce the reconstruction shown on the top right. A natural
way to obtain three different images at the same time is to use a color camera; if
one has a red light, a green light, and a blue light, then a single color image frame
can be treated as three images under three separate lights. On the bottom, an
image of the garment captured in this way, which results in the photometric stereo
reconstruction on the bottom right.

small values. This test is known as a test of integrability, which in vision applications
always boils down to checking that mixed second partials are equal.

Assuming that the partial derivatives pass this sanity test, we can reconstruct
the surface up to some constant depth error. The partial derivative gives the change
in surface height with a small step in either the x or the y direction. This means
we can get the surface by summing these changes in height along some path. In
particular, we have

f(x, y) =

∮
C

(
∂f

∂x
,
∂f

∂y

)
· dl+ c,

where C is a curve starting at some fixed point and ending at (x, y), and c is a
constant of integration, which represents the (unknown) height of the surface at
the start point. The recovered surface does not depend on the choice of curve (ex-
ercises). Another approach to recovering shape is to choose the function f(x, y)
whose partial derivatives most look like the measured partial derivatives. Fig-
ure 20.9 shows the reconstruction obtained for the data shown in Figure 20.8.

Current reconstruction work tends to emphasize geometric methods that re-
construct from multiple views. These methods are very important, but often require
feature matching, as we shall see in Chapters ?? and ??. This tends to mean that
it is hard to get very high spatial resolution, because some pixels are consumed
in resolving features. Recall that resolution (which corresponds roughly to the
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spatial frequencies that can be reconstructed accurately) is not the same as ac-
curacy (which involves a method providing the right answers for the properties it
estimates). Feature-based methods are capable of spectacularly accurate recon-
structions. Because photometric cues have such spatial high resolution, they are a
topic of considerable current interest. One way to use photometric cues is to try
and match pixels with the same brightness across different cameras; this is diffi-
cult, but produces impressive reconstructions. Another is to use photometric stereo
ideas. For some applications, photometric stereo is particularly atractive because
one can get reconstructions from a single view direction—this is important, because
we cannot always set up multiple cameras. In fact, with a trick, it is possible to
get reconstructions from a single frame. A natural way to obtain three different
images at the same time is to use a color camera; if one has a red light, a green light
and a blue light, then a single color image frame can be treated as three images
under three separate lights, and photometric stereo methods apply. In turn, this
means that photometric stereo methods could be used to recover high-resolution
reconstructions of deforming surfaces in a relatively straightforward way. This is
particularly useful when it is difficult to get many cameras to view the object. Fig-
ure 20.10 shows one application to reconstructing cloth in video (from ?), where
multiple view reconstruction is complicated by the need to synchronize frames (al-
ternatives are explored in, for example, ? or ?).


