
C H A P T E R 7

Sampling and Aliasing

7.1 SPATIAL FREQUENCY AND FOURIER TRANSFORMS

We have used the trick of thinking of a signal g(x, y) as a weighted sum of a large (or
infinite) number of small (or infinitely small) box functions. This model emphasizes
that a signal is an element of a vector space. The box functions form a convenient
basis, and the weights are coefficients on this basis. We need a new technique to
deal with two related problems so far left open:

� Although it is clear that a discrete image version cannot represent the full
information in a signal, we have not yet indicated what is lost.

� It is clear that we cannot shrink an image simply by taking every kth pixel—
this could turn a checkerboard image all white or all black—and we would
like to know how to shrink an image safely.

All of these problems are related to the presence of fast changes in an image. For
example, shrinking an image is most likely to miss fast effects because they could
slip between samples; similarly, the derivative is large at fast changes.

These effects can be studied by a change of basis. We change the basis to be
a set of sinusoids and represent the signal as an infinite weighted sum of an infinite
number of sinusoids. This means that fast changes in the signal are obvious, because
they correspond to large amounts of high-frequency sinusoids in the new basis.

7.1.1 Fourier Transforms

The change of basis is effected by a Fourier transform. We define the Fourier
transform of a signal g(x, y) to be

F(g(x, y))(u, v) =

∫ ∞∫
−∞

g(x, y)e−i2π(ux+vy)dxdy.

Assume that appropriate technical conditions are true to make this integral
exist. It is sufficient for all moments of g to be finite; a variety of other possible
conditions are available [?]. The process takes a complex valued function of x, y
and returns a complex valued function of u, v (images are complex valued functions
with zero imaginary component).

For the moment, fix u and v, and let us consider the meaning of the value of
the transform at that point. The exponential can be rewritten

e−i2π(ux+vy) = cos(2π(ux+ vy)) + i sin(2π(ux+ vy)).
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FIGURE 7.1: The real component of Fourier basis elements shown as intensity im-
ages. The brightest point has value one, and the darkest point has value zero. The
domain is [−1, 1]× [−1, 1], with the origin at the center of the image. On the left,
(u, v) = (0, 0.4); in the center, (u, v) = (1, 2); and on the right (u, v) = (10,−5).
These are sinusoids of various frequencies and orientations described in the text.

These terms are sinusoids on the x, y plane, whose orientation and frequency are
given by u, v. For example, consider the real term, which is constant when ux+ vy
is constant (i.e., along a straight line in the x, y plane whose orientation is given by
tan θ = v/u). The gradient of this term is perpendicular to lines where ux+ vy is
constant, and the frequency of the sinusoid is

√
u2 + v2. These sinusoids are often

referred to as spatial frequency components; a variety are illustrated in Figure 7.1.
The integral should be seen as a dot product. If we fix u and v, the value

of the integral is the dot product between a sinusoid in x and y and the original
function. This is a useful analogy because dot products measure the amount of one
vector in the direction of another.

In the same way, the value of the transform at a particular u and v can be
seen as measuring the amount of the sinusoid with given frequency and orientation
in the signal. The transform takes a function of x and y to the function of u and v
whose value at any particular (u, v) is the amount of that particular sinusoid in the
original function. This view justifies the model of a Fourier transform as a change
of basis.

Linearity
The Fourier transform is linear:

F(g(x, y) + h(x, y)) = F(g(x, y)) + F(h(x, y))

and

F(kg(x, y)) = kF(g(x, y)).

The Inverse Fourier Transform It is useful to recover a signal from its
Fourier transform. This is another change of basis with the form

g(x, y) =

∫ ∞∫
−∞

F(g(x, y))(u, v)ei2π(ux+vy)dudv.
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Fourier Transform Pairs Fourier transforms are known in closed form

TABLE 7.1: A variety of functions of two dimensions and their Fourier transforms.
This table can be used in two directions (with appropriate substitutions for u, v and
x, y) because the Fourier transform of the Fourier transform of a function is the
function. Observant readers might suspect that the results on infinite sums of δ
functions contradict the linearity of Fourier transforms. By careful inspection of
limits, it is possible to show that they do not (see, for example, ?). Observant
readers also might have noted that an expression for F(∂f∂y ) can be obtained by
combining two lines of this table.

Function Fourier transform

g(x, y)
∫ ∞∫
−∞

g(x, y)e−i2π(ux+vy)dxdy∫ ∞∫
−∞

F(g(x, y))(u, v)ei2π(ux+vy)dudv F(g(x, y))(u, v)

δ(x, y) 1

∂f
∂x

(x, y) uF(f)(u, v)

0.5δ(x+ a, y) + 0.5δ(x− a, y) cos 2πau

e−π(x2+y2) e−π(u2+v2)

box1(x, y)
sinu
u

sin v
v

f(ax, by) F(f)(u/a,v/b)
ab∑∞

i=−∞
∑∞

j=−∞ δ(x− i, y − j)
∑∞

i=−∞
∑∞

j=−∞ δ(u− i, v − j)

(f ∗ ∗g)(x, y) F(f)F(g)(u, v)

f(x− a, y − b) e−i2π(au+bv)F(f)

f(x cos θ − y sin θ, x sin θ + y cos θ) F(f)(u cos θ − v sin θ, u sin θ + v cos θ)

for a variety of useful cases; a large set of examples appears in ?. We list a few in
Table 7.1 for reference. The last line of Table 7.1 contains the convolution theorem;
convolution in the signal domain is the same as multiplication in the Fourier domain.

Phase and Magnitude The Fourier transform consists of a real and a
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complex component:

F(g(x, y))(u, v) =

∫ ∫ ∞

−∞
g(x, y) cos(2π(ux+ vy))dxdy +

i

∫ ∫ ∞

−∞
g(x, y) sin(2π(ux+ vy))dxdy

= ℜ(F(g)) + i ∗ ℑ(F(g))

= FR(g) + i ∗ FI(g).

It is usually inconvenient to draw complex functions of the plane. One solution
is to plot FR(g) and FI(g) separately; another is to consider the magnitude and
phase of the complex functions, and to plot these instead. These are then called
the magnitude spectrum and phase spectrum, respectively.

The value of the Fourier transform of a function at a particular u, v point
depends on the whole function. This is obvious from the definition because the
domain of the integral is the whole domain of the function. It leads to some subtle
properties, however. First, a local change in the function (e.g., zeroing out a block
of points) is going to lead to a change at every point in the Fourier transform. This
means that the Fourier transform is quite difficult to use as a representation (e.g.,
it might be very difficult to tell whether a pattern was present in an image just by
looking at the Fourier transform). Second, the magnitude spectra of images tends
to be similar. This appears to be a fact of nature, rather than something that
can be proven axiomatically. As a result, the magnitude spectrum of an image is
surprisingly uninformative (see Figure 7.2 for an example).

7.2 SAMPLING AND ALIASING

The crucial reason to discuss Fourier transforms is to get some insight into the
difference between discrete and continuous images. In particular, it is clear that
some information has been lost when we work on a discrete pixel grid, but what?
A good, simple example comes from an image of a checkerboard, and is given in
Figure 7.3. The problem has to do with the number of samples relative to the
function; we can formalize this rather precisely given a sufficiently powerful model.

7.2.1 Sampling

Passing from a continuous function—like the irradiance at the back of a camera
system—to a collection of values on a discrete grid —like the pixel values reported
by a camera—is referred to as sampling. We construct a model that allows us to
obtain a precise notion of what is lost in sampling.

Sampling in One Dimension
Sampling in one dimension takes a function and returns a discrete set of

values. The most important case involves sampling on a uniform discrete grid, and
we assume that the samples are defined at integer points. This means we have a
process that takes some function and returns a vector of values:

sample1D(f(x)) = f .



Section 7.2 Sampling and Aliasing 69

FIGURE 7.2: The second image in each row shows the log of the magnitude spectrum
for the first image in the row; the third image shows the phase spectrum scaled
so that −π is dark and π is light. The final images are obtained by swapping the
magnitude spectra. Although this swap leads to substantial image noise, it doesn’t
substantially affect the interpretation of the image, suggesting that the phase spec-
trum is more important for perception than the magnitude spectrum.

We model this sampling process by assuming that the elements of this vector
are the values of the function f(x) at the sample points and allowing negative
indices to the vector (Figure 7.4). This means that the ith component of f is f(xi).

Sampling in Two Dimensions
Sampling in 2D is very similar to sampling in 1D. Although sampling can

occur on nonregular grids (the best example being the human retina), we proceed
on the assumption that samples are drawn at points with integer coordinates. This
yields a uniform rectangular grid, which is a good model of most cameras. Our
sampled images are then rectangular arrays of finite size (all values outside the grid
being zero).

In the formal model, we sample a function of two dimensions, instead of one,
yielding an array (Figure 7.5). We allow this array to have negative indices in both
dimensions, and can then write

sample2D(F (x, y)) = F ,

where the i, jth element of the array F is F (xi, yj) = F (i, j).
Samples are not always evenly spaced in practical systems. This is quite often

due to the pervasive effect of television; television screens have an aspect ratio of
4:3 (width:height). Cameras quite often accommodate this effect by spacing sample
points slightly farther apart horizontally than vertically (in jargon, they have non-
square pixels).
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A Continuous Model of a Sampled Signal
We need a continuous model of a sampled signal. Generally, this model is used

to evaluate integrals; in particular, taking a Fourier transform involves integrating
the product of our model with a complex exponential. It is clear how this integral
should behave: the value of the integral should be obtained by adding up values
at each integer point. This means we cannot model a sampled signal as a function
that is zero everywhere except at integer points (where it takes the value of the
signal), because this model has a zero integral.

An appropriate continuous model of a sampled signal relies on an important
property of the δ function:∫ ∞

−∞
aδ(x)f(x)dx = a lim

ϵ→0

∫ ∞

−∞
d(x; ϵ)f(x)dx

= a lim
ϵ→0

∫ ∞

−∞

bar(x; ϵ)

ϵ
(f(x))dx

= a lim
ϵ→0

∞∑
i=−∞

bar(x; ϵ)

ϵ
(f(iϵ)bar(x− iϵ; ϵ))ϵ

= af(0).

Here we have used the idea of an integral as the limit of a sum of small strips.
An appropriate continuous model of a sampled signal consists of a δ-function

at each sample point weighted by the value of the sample at that point. We can
obtain this model by multiplying the sampled signal by a set of δ-functions, one
at each sample point. In one dimension, a function of this form is called a comb
function (because that’s what the graph looks like). In two dimensions, a function
of this form is called a bed-of-nails function (for the same reason).

Working in 2D and assuming that the samples are at integer points, this
procedure gets

sample2D(f) =

∞∑
i=−∞

∞∑
j=−∞

f(i, j)δ(x− i, y − j)

= f(x, y)


∞∑

i=−∞

∞∑
j=−∞

δ(x− i, y − j)

 .

This function is zero except at integer points (because the δ-function is zero except
at integer points), and its integral is the sum of the function values at the integer
points.

7.2.2 Aliasing

Sampling involves a loss of information. As this section shows, a signal sampled
too slowly is misrepresented by the samples; high spatial frequency components
of the original signal appear as low spatial frequency components in the sampled
signal—an effect known as aliasing.
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FIGURE 7.3: The two checkerboards on the top illustrate a sampling procedure that
appears to be successful (whether it is or not depends on some details that we will
deal with later). The gray circles represent the samples; if there are sufficient sam-
ples, then the samples represent the detail in the underlying function. The sam-
pling procedures shown on the bottom are unequivocally unsuccessful; the samples
suggest that there are fewer checks than there are. This illustrates two important
phenomena: first, successful sampling schemes sample data often enough; and sec-
ond, unsuccessful sampling schemes cause high-frequency information to appear as
lower-frequency information.
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Sample
1D

FIGURE 7.4: Sampling in 1D takes a function and returns a vector whose elements
are values of that function at the sample points. For our purposes, it is enough
that the sample points be integer values of the argument. We allow the vector to be
infinite dimensional and have negative as well as positive indices.

Sample
2D

FIGURE 7.5: Sampling in 2D takes a function and returns an array; again, we allow
the array to be infinite dimensional and to have negative as well as positive indices.
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The Fourier Transform of a Sampled Signal
A sampled signal is given by a product of the original signal with a bed-of-

nails function. By the convolution theorem, the Fourier transform of this product
is the convolution of the Fourier transforms of the two functions. This means that
the Fourier transform of a sampled signal is obtained by convolving the Fourier
transform of the signal with another bed-of-nails function.

Now convolving a function with a shifted δ-function merely shifts the function
(see exercises). This means that the Fourier transform of the sampled signal is the
sum of a collection of shifted versions of the Fourier transforms of the signal, that
is,

F(sample2D(f(x, y))) = F

f(x, y)


∞∑
i=−∞

∞∑
j=−∞

δ(x− i, y − j)




= F(f(x, y)) ∗ ∗F


∞∑

i=−∞

∞∑
j=−∞

δ(x− i, y − j)




=

∞∑
i=−∞

F (u− i, v − j),

where we have written the Fourier transform of f(x, y) as F (u, v).
If the support of these shifted versions of the Fourier transform of the signal

does not intersect, we can easily reconstruct the signal from the sampled version.
We take the sampled signal, Fourier transform it, and cut out one copy of the
Fourier transform of the signal and Fourier transform this back (Figure 7.6).

However, if the support regions do overlap, we are not able to reconstruct the
signal because we can’t determine the Fourier transform of the signal in the regions
of overlap, where different copies of the Fourier transform will add. This results in
a characteristic effect, usually called aliasing, where high spatial frequencies appear
to be low spatial frequencies (see Figure 7.8 and exercises). Our argument also
yields Nyquist’s theorem: the sampling frequency must be at least twice the highest
frequency present for a signal to be reconstructed from a sampled version. By the
same argument, if we happen to have a signal that has frequencies present only in
the range [2k−1Ω, 2k+1Ω], then we can represent that signal exactly if we sample
at a frequency of at least 2Ω.

7.2.3 Smoothing and Resampling

Nyquist’s theorem means it is dangerous to shrink an image by simply taking every
kth pixel (as Figure 7.8 confirms). Instead, we need to filter the image so that
spatial frequencies above the new sampling frequency are removed. We could do
this exactly by multiplying the image Fourier transform by a scaled 2D bar function,
which would act as a low-pass filter. Equivalently, we would convolve the image
with a kernel of the form (sinx sin y)/(xy). This is a difficult and expensive (a polite
way of saying impossible) convolution because this function has infinite support.

The most interesting case occurs when we want to halve the width and height
of the image. We assume that the sampled image has no aliasing (because if it
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FIGURE 7.6: The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other
by the sampling frequency. Two possibilities occur. If the shifted copies do not
intersect with each other (as in this case), the original signal can be reconstructed
from the sampled signal (we just cut out one copy of the Fourier transform and
inverse transform it). If they do intersect (as in Figure 7.7), the intersection region
is added, and so we cannot obtain a separate copy of the Fourier transform, and
the signal has aliased.

did, there would be nothing we could do about it anyway; once an image has been
sampled, any aliasing that is going to occur has happened, and there’s not much we
can do about it without an image model). This means that the Fourier transform
of the sampled image is going to consist of a set of copies of some Fourier transform,
with centers shifted to integer points in u, v space.

If we resample this signal, the copies now have centers on the half-integer
points in u, v space. This means that, to avoid aliasing, we need to apply a filter
that strongly reduces the content of the original Fourier transform outside the range
|u| < 1/2, |v| < 1/2. Of course, if we reduce the content of the signal inside this
range, we might lose information, too. Now the Fourier transform of a Gaussian is
a Gaussian, and Gaussians die away fairly quickly. Thus, if we were to convolve the
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FIGURE 7.7: The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other
by the sampling frequency. Two possibilities occur. If the shifted copies do not
intersect with each other (as in Figure 7.6), the original signal can be reconstructed
from the sampled signal (we just cut out one copy of the Fourier transform and
inverse transform it). If they do intersect (as in this figure), the intersection region
is added, and so we cannot obtain a separate copy of the Fourier transform, and
the signal has aliased. This also explains the tendency of high spatial frequencies to
alias to lower spatial frequencies.

image with a Gaussian—or multiply its Fourier transform by a Gaussian, which is
the same thing—we could achieve what we want.

The choice of Gaussian depends on the application. If σ is large, there is
less aliasing (because the value of the kernel outside our range is very small), but
information is lost because the kernel is not flat within our range; similarly, if σ is
small, less information is lost within the range, but aliasing can be more substantial.
Figures 7.9 and 7.10 illustrate the effects of different choices of σ.

We have been using a Gaussian as a low-pass filter because its response at
high spatial frequencies is low and its response at low spatial frequencies is high.
In fact, the Gaussian is not a particularly good low-pass filter. What one wants
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256x256 128x128 64x64 32x32 16x16

FIGURE 7.8: The top row shows sampled versions of an image of a grid obtained by
multiplying two sinusoids with linearly increasing frequency—one in x and one in y.
The other images in the series are obtained by resampling by factors of two without
smoothing (i.e., the next is a 128x128, then a 64x64, etc., all scaled to the same
size). Note the substantial aliasing; high spatial frequencies alias down to low spatial
frequencies, and the smallest image is an extremely poor representation of the large
image. The bottom row shows the magnitude of the Fourier transform of each
image displayed as a log to compress the intensity scale. The constant component
is at the center. Notice that the Fourier transform of a resampled image is obtained
by scaling the Fourier transform of the original image and then tiling the plane.
Interference between copies of the original Fourier transform means that we cannot
recover its value at some points; this is the mechanism underlying aliasing.

is a filter whose response is pretty close to constant for some range of low spatial
frequencies—the pass band—and whose response is also pretty close to zero—for
higher spatial frequencies—the stop band. It is possible to design low-pass filters
that are significantly better than Gaussians. The design process involves a detailed
compromise between criteria of ripple—how flat is the response in the pass band
and the stop band?—and roll-off—how quickly does the response fall to zero and
stay there? The basic steps for resampling an image are given in Algorithm 7.1.

7.3 FILTERS AS TEMPLATES

It turns out that filters offer a natural mechanism for finding simple patterns be-
cause filters respond most strongly to pattern elements that look like the filter. For
example, smoothed derivative filters are intended to give a strong response at a
point where the derivative is large. At these points, the kernel of the filter looks
like the effect it is intended to detect. The x-derivative filters look like a verti-
cal light blob next to a vertical dark blob (an arrangement where there is a large
x-derivative), and so on.
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256x256 128x128 64x64 32x32 16x16

FIGURE 7.9: Top: Resampled versions of the image of Figure 7.8, again by factors
of two, but this time each image is smoothed with a Gaussian of σ one pixel before
resampling. This filter is a low-pass filter, and so suppresses high spatial frequency
components, reducing aliasing. Bottom: The effect of the low-pass filter is easily
seen in these log-magnitude images; the low-pass filter suppresses the high spatial
frequency components so that components interfere less, to reduce aliasing.

256x256 128x128 64x64 32x32 16x16

FIGURE 7.10: Top: Resampled versions of the image of Figure 7.8, again by factors
of two, but this time each image is smoothed with a Gaussian of σ two pixels before
resampling. This filter suppresses high spatial frequency components more aggres-
sively than that of Figure 7.9. Bottom: The effect of the low-pass filter is easily
seen in these log-magnitude images; the low-pass filter suppresses the high spatial
frequency components so that components interfere less, to reduce aliasing.



78 Chapter 7 Sampling and Aliasing

Apply a low-pass filter to the original image
(a Gaussian with a σ of between one
and two pixels is usually an acceptable choice).

Create a new image whose dimensions on edge are half
those of the old image

Set the value of the i, jth pixel of the new image to the value
of the 2i, 2jth pixel of the filtered image

Algorithm 7.1: Subsampling an Image by a Factor of Two.

FIGURE 7.11: Filter kernels look like the effects they are intended to detect. On the
left, a smoothed derivative of Gaussian filter that looks for large changes in the
x-direction (such as a dark blob next to a light blob); on the right, a smoothed
derivative of Gaussian filter that looks for large changes in the y-direction.

It is generally the case that filters intended to give a strong response to a
pattern look like that pattern (Figure 7.11). This is a simple geometric result.

7.3.1 Convolution as a Dot Product

Recall from Section ?? that, for G, the kernel of some linear filter, the response of
this filter to an image H is given by

Rij =
∑
u,v

Gi−u,j−vHuv.

Now consider the response of a filter at the point where i and j are zero. This is

R =
∑
u,v

G−u,−vHu,v.
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This response is obtained by associating image elements with filter kernel
elements, multiplying the associated elements, and summing. We could scan the
image into a vector and the filter kernel into another vector in such a way that
associated elements are in the same component. By inserting zeros as needed, we
can ensure that these two vectors have the same dimension. Once this is done, the
process of multiplying associated elements and summing is precisely the same as
taking a dot product.

This is a powerful analogy because this dot product, like any other, achieves
its largest value when the vector representing the image is parallel to the vector
representing the filter kernel. This means that a filter responds most strongly when
it encounters an image pattern that looks like the filter. The response of a filter
gets stronger as a region gets brighter, too.

Now consider the response of the image to a filter at some other point. Nothing
significant about our model has changed. Again, we can scan the image into one
vector and the filter kernel into another vector, such that associated elements lie
in the same components. Again, the result of applying this filter is a dot product.
There are two useful ways to think about this dot product.

7.3.2 Changing Basis

We can think of convolution as a dot product between the image and a different
vector (because we have moved the filter kernel to lie over some other point in
the image). The new vector is obtained by rearranging the old one so that the
elements lie in the right components to make the sum work out. This means that,
by convolving an image with a filter, we are representing the image on a new basis
of the vector space of images—the basis given by the different shifted versions of
the filter. The original basis elements were vectors with a zero in all slots except
one. The new basis elements are shifted versions of a single pattern.

For many of the kernels discussed, we expect that this process will lose
information—for the same reason that smoothing suppresses noise—so that the
coefficients on this basis are redundant. This basis transformation is valuable in
texture analysis. Typically, we choose a basis that consists of small, useful pattern
components. Large values of the basis coefficients suggest that a pattern compo-
nent is present, and texture can be represented by representing the relationships
between these pattern components, usually with some form of probability model.


