Image processing basics

Andy Warhol, Marilyn Diptych, 1962 (source)

Many slides adapted from
Alyosha Efros, Derek Hoiem
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Image processing basics: Outline

* |mages as sampled functions
Sampling and reconstruction, aliasing
Image resampling, interpolation
Image transformations
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FIGURE 2.1: A high-level model of imaging. Light leaves light sources and reflects
from surfaces. Eventually, some light arrives at a camera and enters a lens system.
Some of that light arrives at a photosensor inside the camera.




Image formation (preview)

* What determines the brightness of an image pixel?

Light source(s)

Image plane
Light energy arriving at
P’ per unit time is P
quantified by irradiance W
(Watts per sg. meter)

Strictly speaking, we need
spectral irradiance to
account for light across
different wavelengths

Camera (lenses, shutter)



Spectral energy density
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FIGURE 2.2: The photosensor is divided into a grid of pizels, which are small sen-
sitive locations. Each pizel receives an incoming spectral energy field, and turns it
into a number. This number is typically a weighted average over a position in the
sensor, a very small range of incoming directions and a large range of wavelengths.
Each pizel is at a different position in the sensor, and the lens system and camera
geometry ensure that each sees a different set of incoming directions, so that the
averages produce a coherent image.
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Images as sampled functions

Image storage —o
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digital converter

How your digital camera converts Anelogue
captured light into image pixels electronics
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Digital color image




Images in Python

im = cv2.imread(filename) # read image
im = cv2.cvtColor (im, cv2.COLOR BGR2RGB) # order channels as RGB
im = im / 255 # values range from 0 to 1

RGB image im is a H x W x 3 matrix (numpy.ndarray)

im[0, 0, 0] is the top-left pixel value in R-channel

im[y, x, c] isthe value y+1 pixels down, x+1 pixels to right in the ct" channel
im[H-1, w-1, 2] is the bottom-right pixel in B-channel
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Acquiring 3 channels

Bayer grid (1976)




How are the three channels acquired?

Bayer grid (1976) Why more green?
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Source: Wikipedia


https://en.wikipedia.org/wiki/Bayer_filter
https://commons.wikimedia.org/wiki/File:BayerPatternFiltration.png

Images as sampled functions

* We like to think of a digital image as a sampled representation
of a continuous function f(x, y) defined over a continuous 2D
domain




Sampling
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Sampling and reconstruction

« Sampling: recording the « Reconstruction: converting a
function’s values at a sampled representation back into a
discrete set of locations continuous function by “guessing”

what happens between the
samples

Y Vi

l Sampling l Reconstruction
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Source: S. Marschner (via A. Efros)



1D example: Digital audio

* Recording: sound to analog to samples to disc
* Playback: disc to samples to analog to sound again
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Source: S. Marschner (via A. Efros)



Sampling and reconstruction

« Simple example: a sine wave

AWAWAWAWAWA
VARVARVARVERVARV.

Source: S. Marschner (via A. Efros)




Sampling and reconstruction

« Simple example: a sine wave

« What if we “missed” things between the samples?
« Unsurprising result: information is lost

AWAWAWAWAWA
VAAVARVEAVIRVIRV/

Source: S. Marschner (via A. Efros)




Sampling and reconstruction

« Simple example: a sine wave

« What if we “missed” things between the samples?
« Unsurprising result: information is lost
« Surprising result: indistinguishable from lower frequencies

SVErgialyAva

Source: S. Marschner (via A. Efros)




Sampling and reconstruction

« Simple example: a sine wave

« What if we “missed” things between the samples?
« Unsurprising result: information is lost

« Surprising result: indistinguishable from lower frequencies
(or even higher frequencies)

AAANNANANNA AN
TRATATAVRTATAVSTATATAY

Source: S. Marschner (via A. Efros)




Sampling and reconstruction

Simple example: a sine wave

What if we “missed” things between the samples?

« Unsurprising result: information is lost

« Surprising result: indistinguishable from lower frequencies
(or even higher frequencies)

« Aliasing: signal “traveling in disguise” as other frequencies

AAANNANANNA AN
TRATATAVRTATAVSTATATAY

Source: S. Marschner (via A. Efros)




Wagon wheel effect

« Without dot, wheel appears to be slowly rotating backwards!

DOXRIE

frame 0 frame 1 frame 2 frame 3 frame 4

shutter open time

Source: S. Seitz (via A. Efros)



Aliasing in images
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What's happening?

FIGURE 4.3: The two checkerboards on the top illustrate a sampling procedure that
appears to be successful (whether it is or not depends on some details that we will
deal with later). The gray circles represent the samples; if there are sufficient sam-
ples, then the samples represent the detail in the underlying function. The sam-
pling procedures shown on the bottom are unequivocally unsuccessful; the samples
suggest that there are fewer checks than there are. This illustrates two important
phenomena: first, successful sampling schemes sample data often enough; and sec-
ond, unsuccessful sampling schemes cause high-frequency information to appear as
lower-frequency information.




Aliasing “in the wild”

Disintegrating textures

Moire patterns, false color

Source

Firefox File ''Edit 'View History Bookm.

" e @ Focus Camera | Digital Camers X +
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Source


https://www.focuscamera.com/wavelength/what-is-the-moire-effect-in-photography-how-to-avoid-it/
https://www.japanistry.com/moire-false-colour-anti-aliasing-filters/
https://matthews.sites.wfu.edu/misc/DigPhotog/alias/

Nyquist-Shannon sampling theorem

* When sampling a signal at discrete intervals, the sampling
frequency must be at least twice the maximum frequency of
the input signal to allow us to reconstruct the original perfectly
from the sampled version

7 good

https://en.wikipedia.org/wiki/Nyquist-Shannon sampling theorem



https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

Anti-aliasing

« What are possible solutions?

« Sample more often (if you can)

« Getrid of all frequencies that are greater than half the new sampling
frequency

« Will lose information, but that's better than aliasing

 How to get rid of high frequencies?
* Apply a smoothing or low-pass filter (later)

; lowpass filter
1%&%4 frr] -+ St i~ @)

; lowpass filter

@ — |I| ||I|III| |”| |”|l|” L. —> |D/A conv. —»I \V/\U/\U/\V[\UAUJ —»EQ>>>>




Why should you care about anti-aliasing?

AlexNet on ImageNet

VGG on CIFAR

Prob of correct class

Prob of correct class

—O— Baseline

—O— Anti-aliased network (ours)
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Figure 1. Classification stability for selected images. Predicted probability of the correct class changes when shifting the image. The
baseline (black) exhibits chaotic behavior, which is stabilized by our method (blue). We find this behavior across networks and datasets.
Here, we show selected examples using AlexNet on ImageNet (top) and VGG on CIFAR10 (bottom). Code and anti-aliased versions of
popular networks are available at ht tps://richzhang.github.io/antialiased-cnns/.

R. Zhang. Making convolutional networks shift-invariant again. ICML 2019



https://arxiv.org/pdf/1904.11486.pdf

Image processing basics: Outline

« Images as sampled functions
« Sampling and reconstruction, aliasing

* Image resampling, interpolation



Subsampling an image

* How do we reduce the size of an image by a factor of two?



Subsampling an image

* How do we reduce the size of an image by a factor of two?

How about throwing
away every other
row and column to
create a half-size
image”?



Subsampling without pre-filtering
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Source: S. Seitz (via D. Hoiem)






Subsampling with pre-filtering

1/4 1/8
* Image is smoothed with a Gaussian filter before subsampling

Source: S. Seitz (via D. Hoiem)



Interpolation

r—+% 9

2D Interpolation, f ¢ ¢

top view o ° ®
4xd Downsample to 3x3:

Must supply red pixels
Procedures:
-nearest neighbor value
-bilinear interpolation
-other interpolation



Linear and Bilinear Interpolation

o Known
Unknown
Known #
f(t)=(1-t)f(0)+t (1)
Linear

In 1D

® ¢ 0 o

o9

® o 00

4x4




Bilinear interpolation

We want a value at i + 47,5 + 07, where 7 and j are integers; 0 < di < 1; and
0 < 47 < 1. Write v;; for the value at 7, j. Then use

0 = 035 (1 = 8i)(1 — 85) + Vi1, (88) (1 — 7) + vi g (1 — 86)(87) + vi1,541(58) (85).

Notice that if 67 and Jj are both zero, then v = wv;;; if they are both one, v =
Vit+1,j+15 and v will interpolate the value at the other two corners, too. By a little
manipulation, you can show that this procedure boils down to: predict a value
for i + 47,7 using a linear interpolate; predict a value for 7 + 47,7 + 07 using a
linear interpolate; now linearly interpolate between these two to get a value for
i+ 01,7 + 0j. Modern hardware is particularly efficient at bilinear interpolation,
and any reasonable software environment will be able to do this for you.



Upsampling an image

How do we increase the size of an image by a factor of two?

Let’s increase the
resolution of the
sampling grid!



Upsampling an image

How do we increase the size of an image by a factor of two?

— \What should this
value be?

Need to interpolate!



Application: Demosaicing




Bilinear interpolation more generally

B

http://en.wikipedia.org/wiki/Bilinear interpolation



http://en.wikipedia.org/wiki/Bilinear_interpolation

Other kinds of interpolation

* ®
1D nearest- Linear
neighbour
2D nearest- o
neighbour Bilinear

Bicubic

Source: Wikipedia


https://en.wikipedia.org/wiki/Bicubic_interpolation

Interpolation and function extrema

« When you use linear interpolation, extrema of the image
function can only occur at the original sample points

« What about nonlinear interpolation?

Cubic Spline

Image source


https://www.orcina.com/webhelp/OrcaFlex/Content/html/Interpolationmethods.htm

Image processing basics: Outline

« Images as sampled functions

« Sampling and reconstruction, aliasing
* Image resampling, interpolation

* Image transformations



Image transformations

Downsampling




Image transformations

Upsampling




Image transformations

Contrast change




Image transformations

Blurring/sharpening




Image transformations

Warping




Point processing

« Change range of image:
*  Apply the same function to each pixel value

 Many applications

« Common

 Linear sensors produce strange pictures
«  The world has high dynamic range, 8 bits is too few
« Typically 12 bit sensor, 8 bit image
* Most cameras process sensor results before they report them
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>

Reported pixel value

>

Intensity

FIGURE 2.7: A typical camera response function, mapping the response a linear
sensor would compute to the output recorded by the camera. Notice that locations
that would be quite dark for a linear sensor will be lighter; but as the linear sensor
gets very bright, the output recorded by the camera grows slowly. This means that
the range of outputs is smaller than the range of inputs, which is helpful for practical
cameras. This response function is typically located deep in the camera’s electronics.
Typical consumer cameras apply a variety of transforms before reporting an image,

though one can often persuade cameras to produce an untransformed, linear response
image (a RAW file).




Negative

Input Output

Output

Input

FIGURE 2.8: Mapping individual pixel values using the mapping in the center will

transform the image on the left to that on the right. This function maps light pizel
values to dark ones, and vice versa, and is often called a negative.



Contrast adjustment
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FIGURE 2.9: Mapping individual pizel values using the mapping in the center will
transform the image on the left to that on the right. Notice how the mapping

compresses the range of dark and light pixels, and expands that of mid-range pizels,
so adjusting the contrast of the image.



Gamma correction

Original

Source

FIGURE 2.10: Many imaging and rendering devices have a response that is a power
of the input, so that output = Cinput’, where 7y is a parameter of the device. One
can simulate this effect by applying a transform like those shown in the center
(curves for several values of v). Note that you can remove the effect of such a
transform — gamma correct the image — by applying another such transform with an

appropriately chosen v. The image on the left is transformed to the two examples
on the right with different ~y values.



Image filtering

* Roughly speaking, replace image value at x with some
function of values in its spatial neighborhood N (x):

gx) = T(f(N(x)))

N -

N(x)

g

[~

X



Image filtering

* Roughly speaking, replace image value at x with some
function of values in its spatial neighborhood N (x):

gx) = T(f(N(x)))

o [y
—»T—»

« Examples: smoothing, sharpening, edge detection, etc.




Image warping

« Change domain of image:

x'=Tx), g&) = fx)

f‘/\\/ - \

X T (x)



Image warping

« Change domain of image:

x'=Tx), g&) = fx)




Image warping

« Examples of global parametric warps:

scaling (uniform or
non-uniform)

perspective

affine homography cylindrical

(not covered
in this class)



FIGURE 2.11: Two common coordinate systems for images. On the left, the origin
18 at the top left corner, and we count in pizels. This is an M x N image. I wnll
use the convention I;; for points in this coordinate system, so the top right pizel is
Zi6. On the right, the origin is at the bottom left, and the coordinate axes are more
familiar. It is a good idea to use a range from 0 — 1 (rather than 0 — M ) in this
coordinate system, but if the image 1s not square one direction will run from 0 to
a. I will use the convention I(x,y) for points in this coordinate system, so that the
bottom left pizel is I(u,v).



Translation

Write S for a source image and 7 for a target image. Many important trans-
formations have the form 7 (u(z,y),v(z,y)) = S(z,y). Simpler examples include:

Source image Target image
Translate

—>

e Translating an image where u(z,y) = = + tz, v(z,y) = y + ty (check that
if ¢, > 0,t, > 0, the image moves up and to the right, as in the figure).



Rotation

Write S for a source image and 7 for a target image. Many important trans-
formations have the form 7 (u(z,y),v(z,y)) = S(z,y). Simpler examples include:

Rotate

y ~

3

—

e Rotating an image where u(z,y) = zcosf—ysinf, v(z,y) = xsinf+y cosf
(check that if # > 0, the rotation is counterclockwise, as in the figure).



Rotation

» Rotate the image by an angle of 8 about the origin:

x' = rcos(¢p +0) = rcos(¢p)cos(8) - rsin(¢)sin(0) = xcos(8) — ysin(H)
y' = rsin(¢ +60) = rsin(¢) cos(0) + r cos(¢) sin() = xsin(8) + y cos()

N (x', v") Apply trig identities Substitute
o
X r COS(¢) /
\ (x’ y)

y = rsin($)




Rotation

» Rotate the image by an angle of 8 about the origin:

x' = x cos(0) — ysin(6)

y' = xsin(8) + y cos(0)

t &)

\(x, y) In matrix form:

! 6 —sin(6
9 ()= lsn@ coster ] G




Rotation

o 2D rotation in matrix form:

' 6) —sin(f
G) B [Z?r?((Hg CZ‘S}%f @)

\

R(6)
* Note: even though cos(8) and sin(8) are nonlinear functions of 6,
x" and y' are linear combinations of x and y

« What is the inverse transformation?
* Rotation by -6
« For rotation matrices, R~* = RT



Uniform scaling

Write S for a source image and 7 for a target image. Many important trans-
formations have the form 7 (u(z,y),v(z,y)) = S(z,y). Simpler examples include:

Scale

—

¢ Scaling an image uniformly where u(z,y) = sz, v(z,y) = sy (check that
if s > 1, the image gets bigger, and if s < 1, it gets smaller, as in the figure).



Non-uniform scaling

Write S for a source image and 7 for a target image. Many important trans-
formations have the form 7 (u(z,y),v(z,y)) = S(z,y). Simpler examples include:

Non Uniform
Scale

=

e Scaling an image non-uniformly where u(z,y) = sz, v(z,y) = ty.



Affine transformation

Write S for a source image and 7 for a target image. Many important trans-
formations have the form 7 (u(z,y),v(z,y)) = S(z,y). Simpler examples include:

Source 1mage Target image

Affine
transformation

e Affine transformations where u(z,y) = ax + by + ¢, v(z,y) =dz +ey + f.



Projective transformation

Write S for a source image and 7 for a target image. Many important trans-
formations have the form 7 (u(z,y),v(z,y)) = S(z,y). Simpler examples include:

D

Projective
transformation

—

e Projective transformations where u(z,y) = 25+ by+c

(o __ dztey+f
gr+hy+ti’ l"’(‘l’a y) -

gr+hy+i-



Warping pixels

« Given a coordinate transform (x',y") = T(x,vy) and a source
image f(x,y), how do we compute a transformed image

g(x,y) = f(T(x,y))?




Forward warping

« Send each pixel f(x,y) to its corresponding location
(x',v") = T(x,y) in the second image




Forward warping

« Send each pixel f(x,y) to its corresponding location
(x',v") = T(x,y) in the second image
«  Whatif (x’,y") is not an integer location on the pixel grid?

 We can “distribute” colors among the neighboring grid locations —
known as splatting

T(x,y)

yT_f# yT_ﬁF

!/

¥ fxy) Yogy)

« Often (usually) holes in target image!



Inverse warping

« For each pixel grid location (x', y") in the second image, get
the color from its corresponding location (x,y) = T *(x',y")
in the first image




Inverse warping

« For each pixel grid location (x', y") in the second image, get
the color from its corresponding location (x,y) = T *(x',y")
in the first image

What if (x, y) is not an integer location on the original pixel grid?

Interpolate!

T=1(x',y")

g T s

¥ fxy) Yogy)




Forward vs. inverse warping

 Which is better?

« Usually inverse: more efficient, doesn’t have a problem with holes

 However, it requires an invertible warp function, which is not always
possible



Images relative to other images:

Principal components analysis can be applied to images
(sometimes useful)



Principal components analysis:

Assume we have a dataset of N d-dimensional vectors {x}. This dataset has mean
mean ({x}) and covariance Covmat ({x}). Principal components analysis yields a set
of directions p;, which are eigenvectors of the covariance matrix. These directions
are orthonormal (so that p;-rpj 1s one 1f 2 = j§ and zero otherwise.

Any data item x; can be represented as

x; = mean ({x}) + ) s ;p;.
j=1



Principal components analysis:

Most datasets have the remarkable property that this representation has very low
error even when w is considerably smaller than d (Chapter 33.2 if you haven’t seen
this before). The coefficents s; ; have strong properties, too. First, the mean over
the dataset of each coeflicient i1s zero, so

1
N2 Sii =0
i
and second, the directions can be ordered by the variance of the coefficients. Write

var({s} =~ Z 2,3

for the variance of the j’th coefficient; then if k > j, var ({s}) , < var({s}),. Note
that var ({s}) 1s the j’'th largest eigenvalue of the covariance. The p; are known
as principal components (sometimes loadings) of the dataset; the s; ; are sometimes
known as scores, but are usually just called coefficients. Forming the representation
1s called principal components analysis or PCA.



Mean image from Japanese Facial Expression dataset

First sixteen principal components of the Japanese Facial Expression dat

FIGURE 2.16: The mean and first 16 principal components of the Japanese facial
expression dataset.




Eigenvalues, total of 213 images Eigenvalues, total of 213 images
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FIGURE 2.15: On the left,the eigenvalues of the covariance of the Japanese facial
expression dataset; there are 4096, so it’s hard to see the curve (which is packed
to the left). On the right, a zoomed version of the curve, showing how quickly the
values of the eigenvalues get small.



Sample Face Image

mean | 10 20 50 100

FIGURE 2.17: Approximating a face image by the mean and some principal compo-
nents; notice how good the approximation becomes with relatively few components.



