Image processing basics

Image processing basics: Outline

- Images as sampled functions
- Sampling and reconstruction, aliasing
- Image resampling, interpolation
- Image transformations

Image formation (preview)

- What determines the brightness of an image pixel?

Strictly speaking, we need spectral irradiance to account for light across different wavelengths

Images as sampled functions

Digital color image

Images in Python

```
im = cv2.imread(filename)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
im = im / 255 # values range from 0 to 1
```

RGB image im is a $\mathrm{H} \times \mathrm{W} \times 3$ matrix (numpy.ndarray)
$\operatorname{im}[0,0,0]$ is the top-left pixel value in R-channel
im $[y, x, c]$ is the value $y+1$ pixels down, $x+1$ pixels to right in the $c^{\text {th }}$ channel
im $[H-1, W-1,2]$ is the bottom-right pixel in B-channel

How are the three color channels acquired?

How are the three channels acquired?

Why more green?

Human Luminance Sensitivity Function

Demosaicing:
Estimation of missing components from neighboring values

Images as sampled functions

- We like to think of a digital image as a sampled representation of a continuous function $f(x, y)$ defined over a continuous 2D domain

Sampling and reconstruction

- Sampling: recording the function's values at a discrete set of locations
- Reconstruction: converting a sampled representation back into a continuous function by "guessing" what happens between the samples

Sampling

Source: S. Marschner (via A. Efros)

1D example: Digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again

Source: S. Marschner (via A. Efros)

Sampling and reconstruction

- Simple example: a sine wave

Source: S. Marschner (via A. Efros)

Sampling and reconstruction

- Simple example: a sine wave
- What if we "missed" things between the samples?
- Unsurprising result: information is lost

Source: S. Marschner (via A. Efros)

Sampling and reconstruction

- Simple example: a sine wave
- What if we "missed" things between the samples?
- Unsurprising result: information is lost
- Surprising result: indistinguishable from lower frequencies

Source: S. Marschner (via A. Efros)

Sampling and reconstruction

- Simple example: a sine wave
- What if we "missed" things between the samples?
- Unsurprising result: information is lost
- Surprising result: indistinguishable from lower frequencies (or even higher frequencies)

Source: S. Marschner (via A. Efros)

Sampling and reconstruction

- Simple example: a sine wave
- What if we "missed" things between the samples?
- Unsurprising result: information is lost
- Surprising result: indistinguishable from lower frequencies (or even higher frequencies)
- Aliasing: signal "traveling in disguise" as other frequencies

Source: S. Marschner (via A. Efros)

Wagon wheel effect

Actual motion

Perceived motion

Wagon wheel effect

Aliasing in images

Aliasing "in the wild"

Disintegrating textures

Source

Moire patterns, false color

Source

Source

Nyquist-Shannon sampling theorem

- When sampling a signal at discrete intervals, the sampling frequency must be at least twice the maximum frequency of the input signal to allow us to reconstruct the original perfectly from the sampled version

[^0]
Anti-aliasing

- What are possible solutions?
- Sample more often (if you can)
- Get rid of all frequencies that are greater than half the new sampling frequency
- Will lose information, but that's better than aliasing
- How to get rid of high frequencies?
- Apply a smoothing or low-pass filter (later)

Why should you care about anti-aliasing?

Figure 1. Classification stability for selected images. Predicted probability of the correct class changes when shifting the image. The baseline (black) exhibits chaotic behavior, which is stabilized by our method (blue). We find this behavior across networks and datasets. Here, we show selected examples using AlexNet on ImageNet (top) and VGG on CIFAR10 (bottom). Code and anti-aliased versions of popular networks are available at https://richzhang.github.io/antialiased-cnns/.
R. Zhang. Making convolutional networks shift-invariant again. ICML 2019

Image processing basics: Outline

- Images as sampled functions
- Sampling and reconstruction, aliasing
- Image resampling, interpolation

Subsampling an image

- How do we reduce the size of an image by a factor of two?

Subsampling an image

- How do we reduce the size of an image by a factor of two?

Subsampling without pre-filtering

Subsampling with pre-filtering

1/2

1/4

1/8

- Image is smoothed with a Gaussian filter before subsampling

Upsampling an image

- How do we increase the size of an image by a factor of two?

Upsampling an image

- How do we increase the size of an image by a factor of two?

Upsampling an image

- How do we increase the size of an image by a factor of two?

Bilinear interpolation

- Let $f(0,0)=A, f(1,0)=B, f(0,1)=C, f(1,1)=D$

Bilinear interpolation

- Let $f(0,0)=A, f(1,0)=B, f(0,1)=C, f(1,1)=D$

Bilinear interpolation

- Let $f(0,0)=A, f(1,0)=B, f(0,1)=C, f(1,1)=D$

Application: Demosaicing

$?$		$?$		$?$	
$?$	$?$		$?$	$?$	$?$
$?$		$?$		$?$	
$?$	$?$	$?$	$?$	$?$	
$?$		$?$		$?$	
$?$	$?$	$?$	$?$	$?$	$?$

	$?$		$?$		$?$
$?$		$?$		$?$	
	$?$		$?$		$?$
$?$	\rightarrow	\rightarrow	$?$		
	$?$	1	$?$		$?$
$?$		$?$		$?$	

$?$	$?$	$?$	$?$	$?$	$?$
	$?$		$?$		$?$
$?$		$?$	$?$	$?$	$?$
	$?$		$?$		$?$
$?$	$?$	$?$	$?$	$?$	$?$
	$?$		$?$		$?$

Bilinear interpolation more generally

http://en.wikipedia.org/wiki/Bilinear interpolation

Bilinear interpolation more generally

$$
\begin{array}{ll}
w_{11}=\frac{\left(x_{2}-x\right)\left(y_{2}-y\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)} & w_{21}=\frac{\left(x-x_{1}\right)\left(y_{2}-y\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)} \\
w_{12}=\frac{\left(x_{2}-x\right)\left(y-y_{1}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)} & w_{22}=\frac{\left(x-x_{1}\right)\left(y-y_{1}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}
\end{array}
$$

http://en.wikipedia.org/wiki/Bilinear interpolation

Bilinear interpolation: Basis function view

- Interpolated function is sum of basis functions or "bumps" centered at the four adjacent grid points, weighted by the image values at the corresponding points

Bilinear basis function

Other kinds of interpolation

Interpolation and function extrema

- When you use linear interpolation, extrema of the image function can only occur at the original sample points
- What about nonlinear interpolation?

Image processing basics: Outline

- Images as sampled functions
- Sampling and reconstruction, aliasing
- Image resampling, interpolation
- Image transformations

Image transformations

Image transformations

Image transformations

Image transformations

Image transformations

Point processing

- Change range of image: $g=T(f)$

- Negative: $g=1-f$

Image source

Point processing

- Change range of image: $g=T(f)$

- Affine contrast adjustment: $g=a f+b$

Point processing

- Change range of image: $g=T(f)$

- Piecewise-linear contrast adjustment:

Point processing

- Change range of image: $g=T(f)$

- Gamma correction: $g=a f^{\gamma}$

Source

Image filtering

- Roughly speaking, replace image value at x with some function of values in its spatial neighborhood $N(x)$:

$$
g(x)=T(f(N(x)))
$$

Image filtering

- Roughly speaking, replace image value at x with some function of values in its spatial neighborhood $N(x)$:

$$
g(x)=T(f(N(x)))
$$

- Examples: smoothing, sharpening, edge detection, etc.

Image warping

- Change domain of image:

$$
x^{\prime}=T(x), \quad g\left(x^{\prime}\right)=f(x)
$$

Image warping

- Change domain of image:

$$
x^{\prime}=T(x), \quad g\left(x^{\prime}\right)=f(x)
$$

Image warping

- Examples of global parametric warps:

Translation

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

Uniform scaling

$$
\begin{aligned}
& x^{\prime}=s * x \\
& y^{\prime}=s * y
\end{aligned}
$$

Non-uniform scaling

In matrix form:

$$
\begin{aligned}
& x^{\prime}=s_{x} * x \\
& y^{\prime}=s_{y} * y
\end{aligned} \quad\binom{x^{\prime}}{y^{\prime}}=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\binom{x}{y}
$$

Rotation

- Rotate the image by an angle of θ about the origin:

Rotation

- Rotate the image by an angle of θ about the origin:

$$
\begin{aligned}
& x^{\prime}=r \cos (\phi+\theta)=r \cos (\phi) \cos (\theta)-r \sin (\phi) \sin (\theta)=x \cos (\theta)-y \sin (\theta) \\
& y^{\prime}=r \sin (\phi+\theta)=r \sin (\phi) \cos (\theta)+r \cos (\phi) \sin (\theta)=x \sin (\theta)+y \cos (\theta)
\end{aligned}
$$

Rotation

- Rotate the image by an angle of θ about the origin:

$$
\begin{aligned}
& x^{\prime}=x \cos (\theta)-y \sin (\theta) \\
& y^{\prime}=x \sin (\theta)+y \cos (\theta)
\end{aligned}
$$

Rotation

- 2D rotation in matrix form:

$$
\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{R(\theta)}\binom{x}{y}
$$

- Note: even though $\cos (\theta)$ and $\sin (\theta)$ are nonlinear functions of θ, x^{\prime} and y^{\prime} are linear combinations of x and y
- What is the inverse transformation?
- Rotation by $-\theta$
- For rotation matrices, $R^{-1}=R^{T}$

Affine transformation

- Combination of translation, non-uniform scaling, rotation, and shear

$$
\binom{x^{\prime}}{y^{\prime}}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{x}{y}+\binom{e}{f}
$$

Projective homography

- A transformation that preserves straight lines, but not parallelism

$$
x^{\prime}=\frac{a x+b y+c}{g x+h y+i},
$$

$$
y^{\prime}=\frac{d x+e y+f}{g x+h y+i}
$$

Warping pixels

- Given a coordinate transform $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ and a source image $f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(T(x, y)) ?$

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ in the second image

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ in the second image
- What if $\left(x^{\prime}, y^{\prime}\right)$ is not an integer location on the pixel grid?
- We can "distribute" colors among the neighboring grid locations known as splatting

Inverse warping

- For each pixel grid location $\left(x^{\prime}, y^{\prime}\right)$ in the second image, get the color from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Inverse warping

- For each pixel grid location $\left(x^{\prime}, y^{\prime}\right)$ in the second image, get the color from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
- What if (x, y) is not an integer location on the original pixel grid?
- Interpolate!

Forward vs. inverse warping

- Which is better?
- Usually inverse: more efficient, doesn't have a problem with holes
- However, it requires an invertible warp function, which is not always possible

[^0]: https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling theorem

