Image filtering

-

Recall: Image transformations

- What are different kinds of image transformations?
- Range transformations or point processing
- Image warping
- Image filtering

Image filtering: Outline

- Linear filtering and its properties
- Gaussian filters and their properties
- Nonlinear filtering: Median filtering
- Fun filtering application: Hybrid images

Sliding window operations

- Let's slide a fixed-size window over the image and perform the same simple computation at each window location
- Example use case: how do we reduce image noise?
- Let's take the average of pixel values in each window
- More generally, we can take a weighted sum where the weights are given by a filter kernel

Applying a linear filter

Input

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}
I_{21}	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}
I_{31}	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}
I_{51}	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}

*

Filter

Output

Applying a linear filter

Input

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}
I_{21}	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}
I_{31}	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}
I_{51}	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}

$$
O_{11}=I_{11} \cdot f_{11}+I_{12} \cdot f_{12}+I_{13} \cdot f_{13}+\ldots+I_{33} \cdot f_{33}
$$

Applying a linear filter

Input

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}
I_{21}	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}
I_{31}	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}
I_{51}	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}

Filter
Output

$$
O_{12}=I_{12} \cdot f_{11}+I_{13} \cdot f_{12}+I_{14} \cdot f_{13}+\ldots+I_{34} \cdot f_{33}
$$

Applying a linear filter

Input

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}
I_{21}	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}
I_{31}	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}
I_{51}	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}

Filter
Output

$$
O_{13}=I_{13} \cdot f_{11}+I_{14} \cdot f_{12}+I_{15} \cdot f_{13}+\ldots+I_{35} \cdot f_{33}
$$

Applying a linear filter

Input

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}
I_{21}	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}
I_{31}	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}
I_{51}	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}

Filter

$$
o_{14}=I_{14} \cdot f_{11}+I_{15} \cdot f_{12}+I_{16} \cdot f_{13}+\ldots+I_{36} \cdot f_{33}
$$

Applying a linear filter

Input

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}
I_{21}	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}
I_{31}	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}
I_{51}	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}

Filter
Output

$$
O_{21}=I_{21} \cdot f_{11}+I_{22} \cdot f_{12}+I_{23} \cdot f_{13}+\ldots+I_{43} \cdot f_{33}
$$

Applying a linear filter

Input

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}
I_{21}	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}
I_{31}	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}
I_{51}	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}

Filter
Output

$$
O_{22}=I_{22} \cdot f_{11}+I_{23} \cdot f_{12}+I_{24} \cdot f_{13}+\ldots+I_{44} \cdot f_{33}
$$

Applying a linear filter

Input

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}
I_{21}	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}
I_{31}	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}
I_{51}	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}

Filter
Output

$$
O_{23}=I_{23} \cdot f_{11}+I_{24} \cdot f_{12}+I_{25} \cdot f_{13}+\ldots+I_{45} \cdot f_{33}
$$

Applying a linear filter

Input

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}
I_{21}	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}
I_{31}	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}
I_{51}	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}

Filter

What filter values should we use to find the average in a 3×3 window?

Practical details: Dealing with edges

- To control the size of the output, we need to use padding

Practical details: Dealing with edges

- To control the size of the output, we need to use padding
- What values should we pad the image with?

Practical details: Dealing with edges

- To control the size of the output, we need to use padding
- What values should we pad the image with?
- Zero pad (or clip filter)
- Wrap around
- Copy edge
- Reflect across edge

Properties: Linearity

$$
\text { filter }\left(I, f_{1}+f_{2}\right)=\operatorname{filter}\left(I, f_{1}\right)+\operatorname{filter}\left(I, f_{2}\right)
$$

filter $(\boldsymbol{\bullet}, \square+\square) \quad=\operatorname{filter}(\square, \square) \quad=\square$

$$
\operatorname{filter}(\bullet, \square)+\operatorname{filter}(\cdot \square)=\square+\square=\square
$$

Properties: Linearity

$$
\operatorname{filter}\left(I, f_{1}+f_{2}\right)=\operatorname{filter}\left(I, f_{1}\right)+\operatorname{filter}\left(I, f_{2}\right)
$$

Also:
filter $\left(I_{1}+I_{2}, f\right)=\operatorname{filter}\left(I_{1}, f\right)+\operatorname{filter}\left(I_{2}, f\right)$
filter $(k I, f)=k$ filter (I, f)
filter $(I, k f)=k$ filter (I, f)

Properties: Shift-invariance

filter(shift(I), f) $=\operatorname{shift(filter(I,f))~}$

More linear filtering properties

- Commutativity: $f * g=g * f$
- For infinite signals, no difference between filter and signal
- Associativity: $f *(g * h)=(f * g) * h$
- Convolving several filters one after another is equivalent to convolving with one combined filter:

$$
\left(\left(\left(g * f_{1}\right) * f_{2}\right) * f_{3}\right)=g *\left(f_{1} * f_{2} * f_{3}\right)
$$

- Identity: for unit impulse $e, f * e=f$

Note: Filtering vs. "convolution"

- In classical signal processing terminology, convolution is filtering with a flipped kernel, and filtering with an upright kernel is known as cross-correlation
- Check convention of filtering function you plan to use!

Filtering or "cross-correlation" (Kernel in original orientation)

"Convolution"
(Kernel flipped in x and y)

Practice with linear filters

0	0	0
0	1	0
0	0	0

?

Original

Practice with linear filters

Original

0	0	0
0	1	0
0	0	0

One surrounded by zeros is the identity filter

Filtered (no change)

Practice with linear filters

0	0	0
0	0	1
0	0	0

?

Original

Practice with linear filters

Original

0	0	0
0	0	1
0	0	0

Shifted left
By one pixel

Practice with linear filters

?

Original

Practice with linear filters

Original

Blur (with a box filter)

Practice with linear filters

?

Original

Practice with linear filters

Original

Sharpening filter:
Accentuates differences with local average
(Note that filter sums to 1)

Sharpened

Sharpening

before

after

Sharpening

Source:
S. Gupta

Image filtering: Outline

- Linear filtering and its properties
- Gaussian filters and their properties

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
- To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

Gaussian vs. box filtering

Applying Gaussian filters

Input image (no filter)

Applying Gaussian filters

Source: D. Fouhey and J. Johnson

Applying Gaussian filters

Applying Gaussian filters

Applying Gaussian filters

Choosing filter size

- Rule of thumb: set filter width to about 6σ (captures 99.7% of the energy)

$$
\sigma=8
$$

Width $=21$

Too small!
$\sigma=8$
Width $=43$

A bit small (might be OK)

Gaussian filters: Properties

- Gaussian is a low-pass filter. it removes high-frequency components from the image (more on this soon)
- Convolution with self is another Gaussian
- So we can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
- Convolving two times with Gaussian kernel with std. dev. σ is the same as convolving once with kernel with std. dev. $\sigma \sqrt{2}$
- Gaussian kernel is separable: it factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$
\begin{gathered}
\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right)= \\
\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) \quad \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{y^{2}}{2 \sigma^{2}}\right)
\end{gathered}
$$

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one along rows and one along columns)
- What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
- $O\left(n^{2} m^{2}\right)$
- What if the kernel is separable?
- $O\left(n^{2} m\right)$

Image filtering: Outline

- Linear filtering and its properties
- Gaussian filters and their properties
- Nonlinear filtering: Median filtering

Different types of noise

- Gaussian filtering is appropriate for additive, zero-mean noise (assuming nearby pixels share the same value)

Different types of noise

- What about impulse or shot noise, i.e., when some pixels are arbitrarily replaced by spurious values?

Where Gaussian filtering fails

Adapted from D. Fouhey and J. Johnson

Alternative idea: Median filtering

- A median filter operates over a window by selecting the median intensity in the window

Applying median filter

Applying median filter

median
filter
(width $=3$)

Applying median filter

median
filter
(width $=7$)

Is median filtering linear?

Is median filtering linear?

Image filtering: Outline

- Linear filtering and its properties
- Gaussian filters and their properties
- Nonlinear filtering: Median filtering
- Fun filtering application: Hybrid images

Application: Hybrid images

A. Oliva, A. Torralba, P.G. Schyns, Hybrid Images, SIGGRAPH 2006

Recall: Sharpening

Source:
S. Gupta

"Detail" filter

$$
I-I * g=I *(e-g)
$$

Gaussian

Application: Hybrid images

Gaussian filter

Laplacian filter

Application: Hybrid images

Changing expression

