Image filtering

Recall: Image transformations

- What are different kinds of image transformations?
 - Range transformations or point processing
 - Image warping
 - Image filtering

Image filtering: Outline

- Linear filtering and its properties
- Gaussian filters and their properties
- Nonlinear filtering: Median filtering
- Fun filtering application: Hybrid images

Sliding window operations

- Let's slide a fixed-size window over the image and perform the same simple computation at each window location
- Example use case: how do we reduce image noise?
 - Let's take the average of pixel values in each window
 - More generally, we can take a weighted sum where the weights are given by a filter kernel

$$O_{11} = I_{11} \cdot f_{11} + I_{12} \cdot f_{12} + I_{13} \cdot f_{13} + \dots + I_{33} \cdot f_{33}$$

$$O_{12} = I_{12} \cdot f_{11} + I_{13} \cdot f_{12} + I_{14} \cdot f_{13} + \dots + I_{34} \cdot f_{33}$$

$$O_{13} = I_{13} \cdot f_{11} + I_{14} \cdot f_{12} + I_{15} \cdot f_{13} + \dots + I_{35} \cdot f_{33}$$

$$O_{14} = I_{14} \cdot f_{11} + I_{15} \cdot f_{12} + I_{16} \cdot f_{13} + \dots + I_{36} \cdot f_{33}$$

$$O_{21} = I_{21} \cdot f_{11} + I_{22} \cdot f_{12} + I_{23} \cdot f_{13} + \dots + I_{43} \cdot f_{33}$$

$$O_{22} = I_{22} \cdot f_{11} + I_{23} \cdot f_{12} + I_{24} \cdot f_{13} + \dots + I_{44} \cdot f_{33}$$

$$O_{23} = I_{23} \cdot f_{11} + I_{24} \cdot f_{12} + I_{25} \cdot f_{13} + \dots + I_{45} \cdot f_{33}$$

What filter values should we use to find the average in a 3×3 window?

Practical details: Dealing with edges

To control the size of the output, we need to use padding

Practical details: Dealing with edges

- To control the size of the output, we need to use *padding*
- What values should we pad the image with?

Practical details: Dealing with edges

- To control the size of the output, we need to use padding
- What values should we pad the image with?
 - Zero pad (or clip filter)
 - Wrap around
 - Copy edge
 - Reflect across edge

Source: S. Marschner

Properties: Linearity

$$filter(I, f_1 + f_2) = filter(I, f_1) + filter(I, f_2)$$

Properties: Linearity

filter(
$$I, f_1 + f_2$$
) = filter(I, f_1) + filter(I, f_2)

Also:
filter($I_1 + I_2, f$) = filter(I_1, f) + filter(I_2, f)
filter(I_1, f) = I_1, f filter(I_2, f)

filter(I_1, f) = I_2, f filter(I_2, f)

Properties: Shift-invariance

More linear filtering properties

- Commutativity: f * g = g * f
 - For infinite signals, no difference between filter and signal
- Associativity: f * (g * h) = (f * g) * h
 - Convolving several filters one after another is equivalent to convolving with one combined filter:

$$(((g * f_1) * f_2) * f_3) = g * (f_1 * f_2 * f_3)$$

• Identity: for *unit impulse* e, f * e = f

Note: Filtering vs. "convolution"

- In classical signal processing terminology, convolution is filtering with a *flipped* kernel, and filtering with an upright kernel is known as *cross-correlation*
 - Check convention of filtering function you plan to use!

Filtering or "cross-correlation" (Kernel in original orientation)

"Convolution" (Kernel flipped in x and y)

Original

0	0	0
0	1	0
0	0	0

?

Original

0	0	0
0	1	0
0	0	0

One surrounded by zeros is the identity filter

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

?

Original

Shifted *left* By one pixel

Source: D. Lowe

Original

$\frac{1}{9}$	1	1	1
	1	1	1
	1	1	1

?

Original

Blur (with a box filter)

Source: D. Lowe

Original

Original

I	0	0	0
	0	2	0
	0	0	0

- $\frac{1}{9}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

Sharpening filter:
Accentuates differences
with local average

(Note that filter sums to 1)

Sharpened

Sharpening

before after

Sharpening

Source: S. Gupta

Image filtering: Outline

- Linear filtering and its properties
- Gaussian filters and their properties

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Source: D. Forsyth

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

Gaussian vs. box filtering

Applying Gaussian filters

Input image (no filter)

Source: D. Fouhey and J. Johnson

Choosing filter size

• Rule of thumb: set filter width to about 6σ (captures 99.7% of the energy)

$$\sigma = 8$$
 Width = 21

$$\sigma = 8$$
 Width = 43

Too small!

A bit small (might be OK)

Gaussian filters: Properties

- Gaussian is a *low-pass filter*: it removes high-frequency components from the image (more on this soon)
- Convolution with self is another Gaussian
 - So we can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving *two times* with Gaussian kernel with std. dev. σ is the same as convolving *once* with kernel with std. dev. $\sigma\sqrt{2}$
- Gaussian kernel is separable: it factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

$$\frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{y^2}{2\sigma^2}\right)$$

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one along rows and one along columns)
- What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
 - $O(n^2 m^2)$
- What if the kernel is separable?
 - $O(n^2 m)$

Image filtering: Outline

- Linear filtering and its properties
- Gaussian filters and their properties
- Nonlinear filtering: Median filtering

Different types of noise

 Gaussian filtering is appropriate for additive, zero-mean noise (assuming nearby pixels share the same value)

Different types of noise

 What about impulse or shot noise, i.e., when some pixels are arbitrarily replaced by spurious values?

Where Gaussian filtering fails

Alternative idea: Median filtering

 A median filter operates over a window by selecting the median intensity in the window

Applying median filter

Input image (no filter)

Applying median filter

median filter (width = 3)

Applying median filter

median filter (width = 7)

Is median filtering linear?

Is median filtering linear?

Image filtering: Outline

- Linear filtering and its properties
- Gaussian filters and their properties
- Nonlinear filtering: Median filtering
- Fun filtering application: Hybrid images

Application: Hybrid images

A. Oliva, A. Torralba, P.G. Schyns, <u>Hybrid Images</u>, SIGGRAPH 2006

Recall: Sharpening

Source: S. Gupta

"Detail" filter

Application: Hybrid images

Gaussian filter

Laplacian filter

Application: Hybrid images

