
A gentle introduction to Fourier analysis

Many slides borrowed from S. Seitz, A. Efros, D. Hoiem, B. Freeman, A. Zisserman

Image source

https://victorianweb.org/art/illustration/tenniel/lookingglass/2.3.html


Mystery 1
• Why can downsampling sometimes lead to aliasing?



Gaussian Box filter

Mystery 2
• Why does filtering with a Gaussian give a nice smooth image, 

but filtering with a box filter gives artifacts?



Mystery 3

“Low frequencies”

“High frequencies”

A. Oliva, A. Torralba, P.G. Schyns, Hybrid Images, SIGGRAPH 2006

• How do hybrid images work?

http://cvcl.mit.edu/hybrid/OlivaTorralb_Hybrid_Siggraph06.pdf


Salvador Dali
“Gala Contemplating the Mediterranean Sea, 
which at 30 meters becomes the portrait 
of Abraham Lincoln”, 1976







Fourier analysis
• To understand such phenomena, we need a representation of 

images that allows us to tease apart slow and fast changes



Outline
• 1D Fourier transform

• Definition and properties
• Discrete Fourier transform

• 2D Fourier transform
• Definition
• Examples and properties

• Convolution theorem
• Understanding the sampling theorem



Fourier analysis

Jean-Baptiste Joseph Fourier (1768-1830)
Frequency !

• Any(**) univariate function can 
be expressed as a weighted 
sum of sinusoids of different 
frequencies (1807)

Example: series for a square wave

"
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! sin(!0)



Fourier analysis
• Our building block:

! sin(&' +))

• Add enough of these to get 
any signal you want!

Amplitude

Frequency

Phase

Phase shift )

Amplitude !

Period +,-

'



1D Fourier transform
• Let’s define an (overcomplete) set of basis functions:

!" # = %&'("), + ∈ (−∞,∞)
• Time to enter the strange world of complex exponentials…



1D Fourier transform
• Let’s define an (overcomplete) set of basis functions:

!" # = %&'("), + ∈ (−∞,∞)

• Euler’s formula: %&1 = cos 5 + 7 sin 5

5
cos 5

sin 5

Re

Im
%&1

1

7

Image source

https://www.deviantart.com/woodmath/art/Euler-s-formula-3d-visualization-268936785


1D Fourier transform
• Let’s define a (continuously parameterized) set of basis 

functions:

!" # = %&'("), + ∈ (−∞,∞)

• Euler’s formula: %&1 = cos 5 + 7 sin 5
• So !" # is just a cosine-sine pair at frequency +!



1D Fourier transform
• Let’s define a (continuously parameterized) set of basis 

functions:

!" # = %&'("), + ∈ (−∞,∞)
• Inner product for complex functions is given by:

1, 2 = 3
45

5
1 # 2∗ # 7#

Complex conjugate: 
real part stays the same,
imaginary part is flipped



1D Fourier transform
• Let’s define a (continuously parameterized) set of basis 

functions:

!" # = %&'("), + ∈ (−∞,∞)
• Inner product for complex functions is given by:

1, 2 = 3
45

5
1 # 2∗ # 7#

• Orthonormality:

!"8, !"9 = :1 if +> = +'
0 otherwise



1D Fourier transform
• Given a signal !(#), we want to represent it as a weighted 

combination of the basis functions %& # = ()*+&, with 
weights -(.): 

! # = /
01

1
-(.)()*+&,2.

• Each weight - . is given by the inner product of ! and %&:

- . = !,%& = /
01

1
!(#)(0)*+&,2#



1D Fourier transform

• Forward transform:

! " = $
%&

&
'())+%,-./01)

• Note: for the FT to exist, the energy ∫%&
& |'())|- 1) has to be 

finite

'()) !(")ℱ



1D Fourier transform

• Forward transform:

! " = $
%&

&
'())+%,-./01)

• For each ", !(") is a complex number that encodes both the 
amplitude 2 and phase 3 of the sinusoid 2 sin(28") +3) in 
the decomposition of '()):

! " = Re !(") + < Im !(") ,

2 = Re(!("))- + Im(!("))-, 3 = tan%B Im(!("))Re(!("))
• If '()) is real, then Re !(") = Re !(−") ,

Im !(") = −Im !(−")

'()) !(")ℱ



1D Fourier transform

• Forward transform:

! " = $
%&

&
'())+%,-./01)

• Important properties:
• Energy preservation:

$
%&

&
|'())|- 1) = $

%&

&
|!(")|- 1"

• Linearity: ℱ{5'6 + 8'-} = 5ℱ{'6} + 8ℱ{'-}

'()) !(")ℱ



1D Fourier transform

• Forward transform:

! " = $
%&

&
'())+%,-./01)

• Inverse transform:

' ) = $
%&

&
!(")+,-./01"

• Duality: if ' ) →ℱ !("), then ! ) →ℱ '(−")
• Thus, we can talk about Fourier transform pairs ' ) ↔ !(")

'()) !(")ℱ

!(") '())ℱ%6



Important Fourier transform pairs

box(%) sinc + = sin -+
-+

0.5−0.5



Important Fourier transform pairs

box(%) sinc + = sin -+
-+

gauss %; 2 gauss +; 12

0.5−0.5



Important Fourier transform pairs

box(%) sinc + = sin -+
-+

gauss %; 2 gauss +; 12

0.5−0.5

8 % = 1 unit impulse > +

*The last one is formal since these functions don’t meet the mathematical requirements for FT



Outline
• 1D Fourier transform

• Definition and properties
• Discrete Fourier transform



Discrete Fourier transform (DFT)
• Now suppose our signal consists of ! samples " # ,

# = 0,… ,! − 1
• We can also discretize frequencies to */!, * = 0,… ,! − 1

(* cycles per ! samples)

Image source

"(#) |/ * |

# *

https://www.sciencedirect.com/topics/engineering/discrete-fourier-series


Discrete Fourier transform (DFT)
• Now suppose our signal consists of ! samples " # ,

# = 0,… ,! − 1
• We can also discretize frequencies to */!, * = 0,… ,! − 1

(* cycles per ! samples)
• DFT formula: 

,(*) = /
012

345
" # exp −9 2;*! #

• We can pack the values exp −9 <=>3 # , *, # = 0,… ,! − 1 into an 
!×! matrix @, and DFT becomes just a matrix-vector 
multiplication!

• Fast Fourier transform: only ! log! complexity!
Image source

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://www.sciencedirect.com/topics/engineering/discrete-fourier-series


DFT: Just a change of basis!

! " = $

=

! " $ Source

http://6.869.csail.mit.edu/fa17/lecture/lecture2linearfilters.pdf


Inverse DFT
• Forward DFT:

• Inverse DFT:

where !"# is the transpose of the complex conjugate of !

or $ = !&

or & = #
' !

"#$

$()) = +
,-.

'"#
& / exp −4 267 )/

&(/) = 1
7+

,-.

'"#
$ ) exp 4 267 )/



Periodicity of DFT and inverse DFT
• The result of DFT is periodic: because !(#) is obtained as a 

sum of complex exponentials with a common period of %
samples, !(# + '%) = !(#) for any integer ':

! # + '% = )
*+,

-./
0 1 exp −6 28% 1 # + '%

= )
*+,

-./
0 1 exp −6 281% # exp −628'1 = !(#)

• Likewise, the result of the inverse DFT is a periodic signal: 
0(9 + '%) = 0(9) for any integer '



Outline
• 1D Fourier transform

• Definition and properties
• Discrete Fourier transform

• 2D Fourier transform



2D Fourier transform
• To represent 2D signals !(#, %), we need to extend our 

1D basis functions '( ) = +,-.(/ to two variables:

'(,0 #, % = +,-.(1+,-.02 = +,-.((1302)
= cos 28 9# + ;% + < sin 28(9# + ;%)

• What does this look like?



2D Fourier transform
• 2D basis functions are oriented sinusoidal “gratings”:

• (", $) is the direction 
normal to the grating

• The period is  
1/ "( + $(

"

$



Basis function examples

(", $) Real 
component



Basis function examples

(", $) Real 
component



Basis function examples

(", $) Real 
component



Linear combination of basis functions

(", $) Real 
component



2D Fourier transform

! ", $ = &
'(

(
&
'(

(
) *, + ,'-./ 01234 5* 5+

• Output is 2D and complex-valued:
! ", $ = Re !(", $) + ; Im(!(", $))

• Magnitude spectrum: ! ", $ = Re !(", $) . + Im !(", $) .

• Phase angle spectrum: tan'A BC(D(0,3))EF(D(0,3))

• Symmetry: the Fourier transform of a real-valued image has 
coefficients that come in pairs, with !(", $) being the complex 
conjugate of !(−",−$)
• This means that the magnitude spectrum is symmetric about the 

origin



2D discrete Fourier transform

! ", $ = &
'()

*+,
&
-()

.+,
/ 0,1 exp −628 "0

9 + $1;

Source: B. Freeman

tan+, Im(!(", $))/Re(!(", $))|! ", $ |

Re(! ", $ ) Im(! ", $ )

http://6.869.csail.mit.edu/fa17/lecture/lecture2linearfilters.pdf


Real image examples



Real image examples



Which image goes with which spectrum?



Phase vs. magnitude
• Which has more information, the phase or the magnitude?
• Let’s take the phase from one image and combine it with the 

magnitude from another image



Magnitude

Phase



Phase

Magnitude



Images with periodic patterns
• The magnitude image has peaks corresponding to the 

frequencies of repetition
Image Magnitude image

Source: A. Zisserman

https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Application: Removing periodic patterns

Magnitude 
image

Remove 
peaks

Source: A. Zisserman

https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Application: Removing periodic patterns

Magnitude 
image

Remove 
peaks

Source: A. Zisserman

Lunar orbital image 
(1966)

Remove 
peaks

Join lines 
removed

https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Image transformations
• How does the FT change when the image is scaled?

Scaled by the 
inverse factor!



Image transformations
• How does the FT change when the image is rotated?

Rotates the same 
way!



Image transformations
• How does the FT change when the image is rotated?

Caution: in real images 
this is not always the 
case because of edge 
artifacts (recall that DFT 
treats images as 
periodically tiled)

Image source

https://www.cs.unm.edu/~brayer/vision/fourier.html


Image transformations
• How does the FT change when the image is translated?

Magnitude spectrum 
doesn’t change, 
phase gets 
modulated



Outline
• 1D Fourier transform

• Definition and properties
• Discrete Fourier transform

• 2D Fourier transform
• Definition
• Examples and properties

• Convolution theorem



Convolution theorem
• Convolution in the spatial domain translates to 
multiplication in the frequency domain (and vice versa)

• The Fourier transform of the convolution of two functions is 
the product of their Fourier transforms:

ℱ{# ∗ %} = ℱ{#} ℱ{%}
• The inverse Fourier transform of the product of two Fourier 

transforms is the convolution of the two inverse Fourier 
transforms:

ℱ(){*+} = ℱ(){*} ∗ ℱ(){+}



2D convolution theorem example

*

Image Filter Filtered image

=

×

FT(Image) FT(Filter)

=

FT(Filtered image)



Convolution theorem
• Suppose ! and " both consist of # pixels
• What is the complexity of computing ! ∗ " in the spatial 

domain?
• %(#')

• And what is the complexity of computing ℱ*+ ℱ ! ℱ " ?
• %(# log#) using FFT

• Thus, convolution of an image with a large filter can be more 
efficiently done in the frequency domain



Gaussian Box filter

Understanding the behavior of filtering
• Why does filtering with a Gaussian give a nice smooth image, 

but filtering with a box filter gives artifacts?



Recall: Fourier transform pairs

box(%) sinc + = sin -+
-+

gauss %; 2 gauss +; 12

0.5−0.5



Filtering with a Gaussian



Filtering with a box filter



Low-pass and high-pass filtering
Image Low-pass filtered High-pass filtered

Source: A. ZissermanDemo

https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf
https://www.djmannion.net/img_freq_web/


Closer look at low-pass filtering
• Do we like this low-pass 

filtering result?
• No – it causes ringing

artifacts in the image (why?)
• Recall: it’s equivalent to 

convolving with a sinc function 
in the spatial domain

• This is why Gaussian filtering 
is preferred

Image Low-pass filtered



Hybrid images in the frequency domain

Source

http://olivalab.mit.edu/publications/Talk_Hybrid_Siggraph06.pdf


• Depending on viewing distance, peak sensitivity will occur at 
different frequencies 

Human contrast sensitivity curve



Outline
• 1D Fourier transform

• Definition and properties
• Discrete Fourier transform

• 2D Fourier transform
• Definition
• Examples and properties

• Convolution theorem
• Understanding the sampling theorem



Understanding sampling and aliasing



Recall: Nyquist-Shannon sampling theorem
• When sampling a signal at discrete intervals, the sampling 

frequency must be at least twice the maximum frequency of 
the input signal to allow us to reconstruct the original perfectly 
from the sampled version

bad

good

https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem


Understanding the sampling theorem
• Suppose we have a continuous function !(#) and we want to 

sample it at discrete intervals with a spacing of %
• This can be accomplished by multiplying it by the comb 

function or impulse train:

comb # = +
,-./

/
0(# − 2%)

!(#)

×

%

=

!4 # = +
,-./

/
!(#)0(# − 2%)

Source: A. Zisserman

https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Understanding the sampling theorem

!" # = ! # × comb(#; ,) ." / = . / ∗ 1, comb #; 1,

. /
• Let’s (formally) take the Fourier transform:

Source: A. Zisserman

*Officially, the FT of the comb function 
doesn’t exist since it’s periodic, and since 
2 is a weird function

https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Understanding the sampling theorem

!" # = ! # × comb(#; ,) ." / = . / ∗ 1, comb #; 1,

. /

=

Replicated copies of .(/)!

• Let’s (formally) take the Fourier transform:

Source: A. Zisserman

https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Understanding the sampling theorem
• How do we reconstruct !(#)?
• Let’s apply a box filter in the 

frequency domain (equivalent to 
convolving with a sinc function
in the original domain)

• When will this succeed?
• When the sampling frequency 1/' exceeds 

twice the greatest frequency contained in ( ) !

1/'

( )!(#)

Source: A. Zisserman

https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Understanding the sampling theorem
• If the sampling frequency is too small, frequencies above the 

Nyquist limit are “folded back” onto smaller frequencies, 
resulting in aliasing

Source: A. Zisserman

https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Sampling theorem in 2D
• If the Fourier transform of a continuous function !(#, %) is 

zero for all frequencies beyond '( and )(, i.e., if the Fourier 
transform is band-limited, then !(#, %) can be completely 
reconstructed from its samples as long as the sampling 
distances * and ℎ along the # and % directions are such that 
* ≤ -

./0
and ℎ ≤ -

.10

*
ℎ

*
ℎ

Source: A. Zisserman

https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Aside: Analyzing interpolation methods
• Perfect reconstruction of the subsampled signal requires 

convolution with a sinc filter in the spatial domain, which is 
bad because sinc has infinite support

• Instead, simpler reconstruction (interpolation) methods are 
typically used



• Linear reconstruction can be done by convolving the sampled 
signal with a triangle filter:

• However, the Fourier transform of the triangle filter is the 
sinc% function, so multiplying the signal’s spectrum by it 
introduces high-frequency artifacts 

Aside: Analyzing different interpolation methods

∗ =

Image source

https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html


Bilinear interpolation closeup

Image source

https://cs184.eecs.berkeley.edu/sp19/lecture/5-50/texture-mapping


Why else should you care about Fourier analysis?

S.-Y. Wang et al. CNN-generated images are surprisingly easy to spot... for now. CVPR 2020

https://arxiv.org/pdf/1912.11035.pdf


Why else should you care about Fourier analysis?

https://distill.pub/2016/deconv-checkerboard/

Checkerboard and repetition artifacts in GAN-generated images 

https://distill.pub/2016/deconv-checkerboard/

