Corner detection

Outline

- Keypoint detection: Motivation
- Deriving a corner detection criterion
- The Harris corner detector
- Invariance properties of corners

Why extract keypoints?

- Motivation: image alignment
- We have two images - how do we combine them?

Why extract keypoints?

- Motivation: image alignment
- We have two images - how do we combine them?

Why extract keypoints?

- Motivation: image alignment
- We have two images - how do we combine them?

Why extract keypoints?

- Motivation: image alignment
- We have two images - how do we combine them?

Step 1: extract keypoints
Step 2: match keypoint features

Why extract keypoints?

- Motivation: image alignment
- We have two images - how do we combine them?

Step 1: extract keypoints
Step 2: match keypoint features
Step 3: align images

Characteristics of good keypoints

- Compactness and efficiency
- Many fewer keypoints than image pixels
- Saliency
- Each keypoint is distinctive
- Locality
- A keypoint occupies a relatively small area of the image; robust to clutter and occlusion
- Repeatability
- The same keypoint can be found in several images despite geometric and photometric transformations

Keypoint representations support very fast methods

In some applications, GPU just isn't available
-too heavy; too much power; etc
And there isn't much CPU either

Idea: reduce image to keypoints, work with those

Applications

Keypoints are useful for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Database indexing and retrieval

Corner detection: Outline

- Motivation
- Deriving a corner detection criterion

Deriving a corner detection criterion

- Basic idea: we should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge":
no change
along the edge direction

"corner":
significant
change in all directions

Deriving a corner detection criterion

- Change in appearance of window W for the shift (u, v) :

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

Deriving a corner detection criterion

- Change in appearance of window W for the shift (u, v) :

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

Deriving a corner detection criterion

- Change in appearance of window W for the shift (u, v) :

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

- We want to find out how this function behaves for small shifts

Deriving a corner detection criterion

- First-order Taylor approximation for small shifts (u, v) :

$$
I(x+u, y+v) \approx I(x, y)+I_{x} u+I_{y} v
$$

- Recall: first-order Taylor approximation for a 1D function:

Deriving a corner detection criterion

- First-order Taylor approximation for small shifts (u, v) :

$$
I(x+u, y+v) \approx I(x, y)+I_{x} u+I_{y} v
$$

- Let's plug this into $E(u, v)$:

$$
\begin{gathered}
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2} \\
\approx \sum_{(x, y) \in W}\left[I(x, y)+I_{x} u+I_{y} v-I(x, y)\right]^{2} \\
=\sum_{(x, y) \in W}\left[I_{x} u+I_{y} v\right]^{2}=\sum_{(x, y) \in W} I_{x}^{2} u^{2}+2 I_{x} I_{y} u v+I_{y}^{2} v^{2}
\end{gathered}
$$

Deriving a corner detection criterion

$$
\begin{aligned}
E(u, v) & \approx u^{2} \sum_{x, y} I_{x}^{2}+2 u v \sum_{x, y} I_{x} I_{y}+v^{2} \sum_{x, y} I_{y}^{2} \\
& =\left(\begin{array}{ll}
u & v
\end{array}\right)\left[\begin{array}{ll}
\sum_{x, y} I_{x}^{2} & \sum_{x, y} I_{x} I_{y} \\
\sum_{x, y} I_{x} I_{y} & \sum_{x, y} I_{y}^{2}
\end{array}\right]
\end{aligned}
$$

Second moment matrix M

Deriving a corner detection criterion

$$
E(u, v) \approx u^{2} \sum_{x, y} I_{x}^{2}+2 u v \sum_{x, y} I_{x} I_{y}+v^{2} \sum_{x, y} I_{y}^{2}
$$

- This is a quadratic function of (u, v) :

- How can we analyze the shape of this surface?

Interpreting the second moment matrix

- A horizontal "slice" of $E(u, v)$ is given by the equation of an ellipse:

$$
\left(\begin{array}{ll}
u & v
\end{array}\right) M\binom{u}{v}=\text { const. }
$$

Interpreting the second moment matrix

- Consider the axis-aligned case (gradients are either horizontal or vertical):

$$
M=\left[\begin{array}{cc}
\sum_{x, y} I_{x}^{2} & \sum_{x, y} I_{x} I_{y} \\
\sum_{x, y} I_{x} I_{y} & \sum_{x, y} I_{y}^{2}
\end{array}\right]
$$

- If either a or b is close to 0 , then this is not a corner, so we want locations where both are large

Interpreting the second moment matrix

- Consider the axis-aligned case (gradients are either horizontal or vertical):

$$
\begin{gathered}
\left(\begin{array}{ll}
u & v
\end{array}\right)\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right]\binom{u}{v}=1 \\
a u^{2}+b v^{2}=1 \\
\frac{u^{2}}{\left(a^{-1 / 2}\right)^{2}}+\frac{v^{2}}{\left(b^{-1 / 2}\right)^{2}}=1
\end{gathered}
$$

Interpreting the second moment matrix

- In general, need to diagonalize M :

$$
M=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

- The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Visualization of second moment matrices

Visualization of second moment matrices

Note: axes are rescaled so ellipse areas are proportional to edge energy (i.e., bigger ellipses correspond to stronger edges)

Interpreting the eigenvalues

- Classification of image points using eigenvalues of M :

Corner response function

$$
R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

α : constant (0.04 to 0.06)

\qquad

Outline

- Keypoint detection: Motivation
- Deriving a corner detection criterion
- The Harris corner detector

The Harris corner detector

1. Compute partial derivatives I_{x} and I_{y} at each pixel
2. Compute second moment matrix in a Gaussian window around each pixel:

$$
M=\left[\begin{array}{cc}
\sum_{x, y} w(x, y) I_{x}^{2} & \sum_{x, y} w(x, y) I_{x} I_{y} \\
\sum_{x, y} w(x, y) I_{x} I_{y} & \sum_{x, y} w(x, y) I_{y}^{2}
\end{array}\right]
$$

C.Harris and M.Stephens, A Combined Corner and Edge Detector, Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

The Harris corner detector

1. Compute partial derivatives I_{x} and I_{y} at each pixel
2. Compute second moment matrix in a Gaussian window around each pixel
3. Compute corner response function $R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}$
4. Threshold R
5. Find local maxima of response function (NMS)
C.Harris and M.Stephens, A Combined Corner and Edge Detector, Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Harris Detector: Example

Harris Detector: Example

Compute corner response R

Harris Detector: Example

Find points with large corner response: $R>$ threshold

Harris Detector: Example

Take only the points of local maxima of R

Harris Detector: Example

Outline

- Keypoint detection: Motivation
- Deriving a corner detection criterion
- The Harris corner detector
- Behavior of corner features w.r.t. image transformations

Behavior w.r.t. image transformations

- To be useful for image matching, "the same" corner features need to show up despite geometric and photometric transformations
- We need to analyze how the corner response function and the corner locations change in response to various transformations

Affine intensity change

$$
\square \Leftrightarrow \square \quad I \rightarrow a I+b
$$

- What happens to the corner response function in case of intensity shifts $(I \rightarrow I+b)$?
- It depends only on image derivatives, so it's invariant to intensity shifts
- What about intensity scaling $(I \rightarrow a I)$?
- Not fully invariant if threshold stays constant

Image translation

- How do the detected corner locations change if the image pattern is translated?
- All the ingredients of the second moment matrix are shift-invariant, and so is the corner response function
- However, the locations of the corners are equivariant (or covariant) w.r.t. shifts

Translate the image - the corners translate

Image rotation

- How do the detected corner locations change if the image pattern is rotated?
- Assuming the second moment matrix is calculated over a circular neighborhood (and ignoring resampling issues), the rotation changes but the eigenvalues stay the same, so the response function is invariant
- The locations of the corners are equivariant (or covariant) w.r.t. rotations

Rotate the image - the corners rotate

Image scaling

- How do the detected corner locations change if the image pattern is scaled?

Image scaling

- How do the detected corner locations change if the image pattern is scaled?
- Assuming fixed-size neighborhoods for calculating the second moment matrix, the corner response function is not invariant and the corner locations are not equivariant w.r.t. scaling

Scale the image - lose/gain some corners (but not too bad)

Next: describing the image around a corner

Corresponding neighborhoods are scaled and rotated appropriately. Arrows identify matches; look for others on your own.

