Corner detection

9300 Harris Corners Pkwy, Charlotte, NC
Outline

• Keypoint detection: Motivation
• Deriving a corner detection criterion
• The Harris corner detector
• Invariance properties of corners
Why extract keypoints?

• Motivation: image alignment
 • We have two images – how do we combine them?
Why extract keypoints?

- Motivation: image alignment
 - We have two images – how do we combine them?
Why extract keypoints?

• Motivation: image alignment
 • We have two images – how do we combine them?
Why extract keypoints?

- Motivation: image alignment
 - We have two images – how do we combine them?

Step 1: extract keypoints
Step 2: match keypoint features
Why extract keypoints?

- Motivation: image alignment
 - We have two images – how do we combine them?

Step 1: extract keypoints
Step 2: match keypoint features
Step 3: align images
Characteristics of good keypoints

- Compactness and efficiency
 - Many fewer keypoints than image pixels

- Saliency
 - Each keypoint is distinctive

- Locality
 - A keypoint occupies a relatively small area of the image; robust to clutter and occlusion

- Repeatability
 - The same keypoint can be found in several images despite geometric and photometric transformations
Keypoint representations support very fast methods

In some applications, GPU just isn’t available
	-too heavy; too much power; etc
And there isn’t much CPU either

Idea: reduce image to keypoints, work with those
Applications

Keypoints are useful for:

• Image alignment
• 3D reconstruction
• Motion tracking
• Robot navigation
• Database indexing and retrieval
Corner detection: Outline

- Motivation
- Deriving a corner detection criterion
Deriving a corner detection criterion

• Basic idea: we should easily recognize the point by looking through a small window

• Shifting a window in any direction should give a large change in intensity

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions
Deriving a corner detection criterion

- Change in appearance of window W for the shift (u, v):

$$E(u, v) = \sum_{(x, y) \in W} [I(x + u, y + v) - I(x, y)]^2$$
Deriving a corner detection criterion

- Change in appearance of window W for the shift (u, v):

$$E(u, v) = \sum_{(x, y) \in W} [I(x + u, y + v) - I(x, y)]^2$$
Deriving a corner detection criterion

• Change in appearance of window W for the shift (u, v):

$$E(u, v) = \sum_{(x, y) \in W} [I(x + u, y + v) - I(x, y)]^2$$

• We want to find out how this function behaves for small shifts
Deriving a corner detection criterion

- First-order Taylor approximation for small shifts \((u, v)\):
 \[
 I(x + u, y + v) \approx I(x, y) + I_x u + I_y v
 \]

- Recall: first-order Taylor approximation for a 1D function:
 \[
 f(x + u) \approx f(x) + f'(x)u
 \]
Deriving a corner detection criterion

- First-order Taylor approximation for small shifts \((u, v)\):

\[
I(x + u, y + v) \approx I(x, y) + I_x u + I_y v
\]

- Let’s plug this into \(E(u, v)\):

\[
E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2
\]

\[
\approx \sum_{(x,y) \in W} [I(x, y) + I_x u + I_y v - I(x, y)]^2
\]

\[
= \sum_{(x,y) \in W} [I_x u + I_y v]^2 = \sum_{(x,y) \in W} I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2
\]
Deriving a corner detection criterion

\[E(u, v) \approx u^2 \sum_{x,y} I_x^2 + 2uv \sum_{x,y} I_x I_y + v^2 \sum_{x,y} I_y^2 \]

\[= (u \ v) \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

Second moment matrix \(M \)
Deriving a corner detection criterion

\[E(u, v) \approx u^2 \sum_{x,y} I_x^2 + 2uv \sum_{x,y} I_x I_y + v^2 \sum_{x,y} I_y^2 \]

- This is a quadratic function of \((u, v)\):

- How can we analyze the shape of this surface?
Interpreting the second moment matrix

- A horizontal “slice” of $E(u, v)$ is given by the equation of an ellipse:

$$ (u \quad v)M \begin{pmatrix} u \\ v \end{pmatrix} = \text{const.} $$
Interpreting the second moment matrix

- Consider the axis-aligned case (gradients are either horizontal or vertical):

\[M = \begin{bmatrix}
\sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\
\sum_{x,y} I_x I_y & \sum_{x,y} I_y^2
\end{bmatrix} \]

- If either \(a \) or \(b \) is close to 0, then this is not a corner, so we want locations where both are large
Interpreting the second moment matrix

- Consider the axis-aligned case (gradients are either horizontal or vertical):

\[
\begin{pmatrix} u \\ v \end{pmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 1
\]

\[
u^2 + v^2 = \frac{a^{-1/2}}{2} + \frac{b^{-1/2}}{2} = 1
\]
Interpreting the second moment matrix

• In general, need to diagonalize M:

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

• The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R
Visualization of second moment matrices
Visualization of second moment matrices

Note: axes are rescaled so ellipse areas are proportional to edge energy (i.e., bigger ellipses correspond to stronger edges)
Interpreting the eigenvalues

• Classification of image points using eigenvalues of M:

- **Corner**: λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions.
- **Edge**: $\lambda_1 >\!\!> \lambda_2$.
- **Flat** region: λ_1 and λ_2 are small; E is almost constant in all directions.
Corner response function

\[R = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 \]

\(\alpha \): constant (0.04 to 0.06)
Outline

• Keypoint detection: Motivation
• Deriving a corner detection criterion
• The Harris corner detector
The Harris corner detector

1. Compute partial derivatives I_x and I_y at each pixel
2. Compute second moment matrix in a Gaussian window around each pixel:

$$M = \begin{bmatrix}
\sum_{x,y} w(x, y) I_x^2 & \sum_{x,y} w(x, y) I_x I_y \\
\sum_{x,y} w(x, y) I_x I_y & \sum_{x,y} w(x, y) I_y^2
\end{bmatrix}$$

The Harris corner detector

1. Compute partial derivatives I_x and I_y at each pixel
2. Compute second moment matrix in a Gaussian window around each pixel
3. Compute corner response function $R = \text{det}(M) - \alpha \text{trace}(M)^2$
4. Threshold R
5. Find local maxima of response function (NMS)

Harris Detector: Example
Harris Detector: Example

Compute corner response R
Harris Detector: Example

Find points with large corner response: $R > \text{threshold}$
Harris Detector: Example

Take only the points of local maxima of R
Harris Detector: Example
Outline

• Keypoint detection: Motivation
• Deriving a corner detection criterion
• The Harris corner detector
• Behavior of corner features w.r.t. image transformations
Behavior w.r.t. image transformations

- To be useful for image matching, “the same” corner features need to show up despite geometric and photometric transformations
- We need to analyze how the corner response function and the corner locations change in response to various transformations
Affine intensity change

$I \rightarrow \alpha I + b$

- What happens to the corner response function in case of intensity shifts ($I \rightarrow I + b$)?
 - It depends only on image derivatives, so it's *invariant* to intensity shifts
- What about intensity scaling ($I \rightarrow \alpha I$)?
 - *Not fully invariant* if threshold stays constant
Image translation

How do the detected corner locations change if the image pattern is translated?

- All the ingredients of the second moment matrix are \textit{shift-invariant}, and so is the corner response function.
- However, the locations of the corners are \textit{equivariant} (or \textit{covariant}) w.r.t. shifts.

Translate the image – the corners translate.
How do the detected corner locations change if the image pattern is rotated?

- Assuming the second moment matrix is calculated over a circular neighborhood (and ignoring resampling issues), the rotation changes but the eigenvalues stay the same, so the response function is invariant.
- The locations of the corners are equivariant (or covariant) w.r.t. rotations.

Rotate the image – the corners rotate.
How do the detected corner locations change if the image pattern is scaled?
• How do the detected corner locations change if the image pattern is scaled?
 • Assuming fixed-size neighborhoods for calculating the second moment matrix, the corner response function is not invariant and the corner locations are not equivariant w.r.t. scaling

Scale the image – lose/gain some corners (but not too bad)
Next: describing the image around a corner

Corresponding neighborhoods are scaled and rotated appropriately. Arrows identify matches; look for others on your own.